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Anisotropy Effects in Nucleation
for Conservative Dynamics
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We analyze metastability and nucleation in the context of a local version of
the Kawasaki dynamics for the two-dimensional anisotropic Ising lattice gas at
very low temperature. Let �⊂Z

2 be a sufficiently large finite box. Particles per-
form simple exclusion on �, but when they occupy neighboring sites they feel
a binding energy −U1 < 0 in the horizontal direction and −U2 < 0 in the verti-
cal direction; we assume U1 � U2. Along each bond touching the boundary of
� from the outside, particles are created with rate ρ=e−�β and are annihilated
with rate 1, where β is the inverse temperature and �>0 is an activity param-
eter. Thus, the boundary of � plays the role of an infinite gas reservoir with
density ρ. We take �∈ (U1,U1 +U2) where the totally empty (full) configura-
tion can be naturally associated to metastability (stability). We investigate how
the transition from empty to full takes place under the dynamics. In particular,
we identify the size and some characteristics of the shape of the critical droplet
and the time of its creation in the limit as β →∞. We observe very different
behavior in the weakly or strongly anisotropic case. In both case we find that
Wulff shape is not relevant for the nucleation pattern.

KEY WORDS: Lattice gas; Kawasaki dynamics; metastability; critical droplet;
large deviations.

1. INTRODUCTION

In this paper, we study the metastable behavior of the two-dimensional
anisotropic Ising lattice gas subject to Kawasaki dynamics. We consider
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the “local version” of the model, where particles live and evolve in a con-
servative way on a finite box � and are created resp. annihilated at the
boundary of this box in a way that reflects an infinite gas reservoir. In
this way the number of particles is not globally conserved and the equilib-
rium will be described by means of a grand-canonical Gibbs measure with
a chemical potential which is related to the rate of creation of particles at
the boundary.

We introduce a stochastic dynamics given by a discrete time Metrop-
olis algorithm (we refer to (1.9), see also ref. 15). In particular the detailed
balance condition is satisfied with respect to the Gibbs grand-canonical
measure corresponding to the Ising Hamiltonian (see (1.2)). We call U1,
U2 the binding energy between two nearest–neighbor particles in the hor-
izontal and vertical direction, respectively. Without loss of generality we
always suppose U1 � U2. We consider the asymptotic regime correspond-
ing to fixed volume and chemical potential in the limit of large inverse
temperature β. The above setup gives rise to a reversible Freidlin Wentzell
Markov chain (see ref. 15).

Our results generalize part of those obtained by den Hollander
et al.(8), where, in particular, the same model was considered with isotropic
interaction (U1 =U2). In ref. 7, the three-dimensional isotropic case was
considered. In this paper, we consider only the two-dimensional case and
we choose the parameters of the interaction so that the empty and full
configurations are naturally associated to the metastable and stable states.
We identify the size and shape of the critical droplet and the time of its
creation in the limit of low temperature. Our results are comparable with
but less complete than those obtained by Kotecký and Olivieri(9) for the
anisotropic Ising model subject to Glauber dynamics. Kawasaki dynamics
has its own characteristics, which need to be handled in the description of
the nucleation. Particle conservation in the interior of the box represents a
serious obstacle in controlling the growing and the shrinking of droplets.

It will turn out that a complete description of the metastable behav-
ior, as given in ref. 9 for Glauber dynamics, is much more complicated
for Kawasaki dynamics. The isotropic case is simpler but still quite com-
plicated. In this context in ref. 6, a description of the tube of typical
trajectories is given. In the present paper we do not obtain such a com-
plete description. We remark that in many previous papers(1,4,5,7,9,10,12)

the asymptotic of the tunnelling time and the tube of typical trajectories
realizing the transition were treated simultaneously by exploiting a detailed
control of the landscape of energy in connection with the paths allowed by
the dynamics.

In this paper, following the strategy proposed in ref. 11, we are able
to determine the asymptotic behavior in probability, for large β, of the
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transition time between the empty and full configuration. Indeed using
ref. 11 the control of the transition time can be obtained on the basis of
relatively weak hypotheses: the knowledge of the global saddles between the
metastable and the stable state together with the absence of too “deep wells”.

We also have some partial information on the typical trajectories real-
izing the transition between metastability and stability. Indeed we discuss
in detail the critical droplet representing the “gate” to the stable state.

Let us now discuss the motivations and the specific features of our
model by outlining the main results.

In the Freidlin Wentzell regime it is natural to call Wulff shape the
one minimizing the energy of a droplet at fixed volume. Indeed at low
temperature only the energy is relevant not entropy. In our case this is a
rectangle with horizontal and vertical sides proportional, respectively, to
the corresponding coupling constants U1 and U2 (see ref. 9).

The main question that is natural to address concerns the relevance of
Wulff shape in the nucleation pattern. It turns out that particles can move
along the border of a droplet more rapidly than they can arrive from the
boundary of the container by inducing the growth of the droplet.

One could be tempted to conjecture that this displacement along the
border of the growing droplet should be able to establish the equilibrium
shape at fixed volume namely, the Wulff shape. However, a careful com-
parison between time scales of contraction, growth and of different types
of movements on the border, shows that the above conjecture is false.

The critical configurations are different and more complicated than the
ones for Ising spins under Glauber dynamics (even in the anisotropic case).

We observe very different behavior of our model for weak or strong
anisotropy, corresponding, roughly speaking, to U1 smaller or larger than
2U2 (see (1.49) for more details).

For weak anisotropy a rigorous result that we are able to prove is that
the critical droplet is close to the Wulff shape (with a highly degenerate
and complicated microscopic structure) whereas we have strong indications
that during the other stages of nucleation, namely both in the subcritical
and supercritical part, the shape of the growing droplet is not Wulff. Actu-
ally large supercritical droplets tend to have a squared shape contrary to
what happens for the non-conservative Glauber dynamics.

For strong anisotropy the critical droplet is not Wulff and the Wulff
shape is crossed during the supercritical growth.

In both cases the Wulff shape is not relevant in the nucleation pat-
tern, similarly to what came out in the Glauber case (see refs. 9 and 10).

In order to predict, at least at the heuristic level the nucleation pat-
tern, we have to analyze the various mechanisms of modification of a
rectangular droplet. We restrict ourselves to rectangles since, as is easy to



542 Nardi et al.

verify, every cluster is transformed with high probability into a rectangle
in a relatively short time. Suppose we are given a rectangle with horizon-
tal side l1 and vertical side l2. Suppose that the occupied sites are pre-
cisely the ones contained inside the rectangle. The typical mechanisms to
add or remove a row or a column from a rectangle are similar to the cor-
responding mechanisms occurring in non-conservative Glauber dynamics;
but now, in our locally conservative dynamics, an important role is played
by an additional mechanism involving the displacement of particles along
the border of the rectangle. It consists either

(I) of the loss of a row with the simultaneous gain of a column:
(l1, l2)→ (l1+1, l2−1); or

(II) of the loss of a column with the simultaneous gain of a row:
(l1, l2)→ (l1−1, l2+1)

(I) and (II) can also involve, beyond locally conservative moves, creation
or annihilation of particles at the boundary of the container to get the
final rectangle.

It is reasonable to expect that the mechanism (I) is preferred when l2
is sufficiently large in terms of l1 whereas (II) is preferred in the opposite
case. The characteristic shape corresponding to a balance between the two
mechanisms gives rise to a sort of equilibrium that corresponds to a min-
imum of the energy at fixed perimeter and that is not Wulff.

For sufficiently large rectangles, this balance takes place when l1− l2∼
l̄ with l̄ a suitable constant depending on the coupling constants of the
model (see (1.37)). A rectangle with such a shape is called standard (see
point 6 in Section 1.3 for a precise definition).

As discussed heuristically in Section 2.2, for weak anisotropy, we
expect that, after an initial stage which we are going to describe in a while,
the nucleation pattern consists of a growing sequence of standard rectan-
gles. The critical droplet belongs to this sequence, and it happens that it
is, at the same time, standard and Wulff but this has to be considered
as an accident. Clearly, large supercritical standard rectangles are almost
squared. This behavior is very different with respect to the one of non-
conservative dynamics where, for any degree of anisotropy, the supercrit-
ical growth is highly anisotropic (see ref. 9).

Quite surprisingly, in the early stage of nucleation we have a growth
along domino shape with l1∼ 2l2 independently on the parameters of the
interaction (see point 6 in Section 1.3).

In the case of strong anisotropy U1 >2U2 we develop the above heu-
ristic discussion coming to the conclusion that the growth follows the
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domino shape up to the critical droplet which therefore is not Wulff;
indeed in this case the ratio between the side lengths of a Wulff rectan-
gle is larger than 2, the value corresponding to domino shape. Let l̂1, l̂2
be the horizontal and vertical sides, respectively, of the critical droplet. In
this strongly anisotropic case the supercritical growth follows a sequence
of rectangles with l2= l̂2 and l1= l̂1+m, with m=1,2, . . . up to l1=L the
side of the container. During this epoch, the nucleation pattern crosses the
Wulff shape. Finally, after the formation of a strip l̂2×L the system starts
growing in the vertical direction up to the full configuration.

This behavior in the strongly anisotropic case is more similar to what
happens in the corresponding Glauber case for any degree of anisotropy.

In the remaining part of this section we give definitions and the main
theorem.

In Section 2 we give a heuristic discussion of the problem from a stat-
ical and from a dynamical point of view. Section 3 contains the proof of
the theorems.

1.1. Definition of the Model

Let �⊂Z
2 be a finite box centered at the origin that will be chosen

large enough. Let

∂−�={x ∈�: ∃y /∈�: |y−x|=1} (1.1)

be the interior boundary of � and let �0=�\ ∂−� be the interior of �.
With each x ∈� we associate an occupation variable η(x), assuming val-
ues 0 or 1. A lattice configuration is denoted by η∈X ={0,1}�. We often
identify η with its support, i.e. the set of occupied sites in η.

Each configuration η ∈ X has an energy given by the following
Hamiltonian:

H(η)=−U1

∑

(x,y)∈�∗
0,h

η(x)η(y)−U2

∑

(x,y)∈�∗
0,v

η(x)η(y)+�
∑

x∈�

η(x),

(1.2)

where �∗
0,h

(resp. �∗
0,v

) is the set of the horizontal (vertical) unoriented
bonds joining n.n. points in �0. Thus the interaction is acting only inside
�0; the binding energy associated to a horizontal (vertical) bond is −U1 <

0 (−U2 < 0). We can suppose without loss of generality that U1 � U2.
(Note that H −�

∑
x∈∂−� η(x) can be viewed as the Hamiltonian, in lat-

tice gas variables, for an Ising system enclosed in �0, with 0 boundary
conditions.)
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The grand-canonical Gibbs measure associated with H is

µ(η)= e−βH(η)

Z
, η∈X , (1.3)

where

Z=
∑

η∈X
e−βH(η). (1.4)

1.2. Local Kawasaki Dynamics

We next define Kawasaki dynamics on �, with a boundary condition
that mimicks the effect of an infinite gas reservoir outside � with den-
sity ρ = e−�β. Let b= (x→ y) be an oriented bond, i.e. an ordered pair
of nearest-neighbor sites, and define

∂∗�out = {b= (x→y) : x ∈ ∂−�,y �∈�},
∂∗�in = {b= (x→y) : x �∈�,y ∈ ∂−�},
�∗,orie = {b= (x→y) : x, y ∈�},

(1.5)

and put �̄∗,orie=∂∗�out∪∂∗�in∪�∗,orie. Two configurations η, η′ ∈X with
η �=η′ are said to be communicating states if there exists a bond b∈ �̄∗,orie

such that η′ = Tbη, where Tbη is the configuration obtained from η as
follows:

for b= (x→y)∈�∗,orie, Tbη denotes the configuration obtained from
η by interchanging particles along b:

Tbη(z)=





η(z) if z �=x, y,

η(x) if z=y,

η(y) if z=x

(1.6)

for b= (x→y)∈ ∂∗�out we set:

Tbη(z)=
{

η(z) if z �=x,

0 if z=x
(1.7)

this describes the annihilation of particles along the border;
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for b= (x→y)∈ ∂∗�in we set:

Tbη(z)=
{

η(z) if z �=y,

1 if z=y
(1.8)

this describes the creation of particles along the border.

The Kawasaki dynamics is the discrete time Markov chain (ηt )t∈N on
state space X given by the following transition probabilities: for η �=η′:

P(η, η′)=
{
|�̄∗,orie|−1

e−β[H(η′)−H(η)]+ if ∃b∈ �̄∗,orie :η′ =Tbη,

0 otherwise
(1.9)

and P(η, η)= 1−∑
η′ �=η P (η, η′), where [a]+ = a ∨ 0. This is a standard

Metropolis dynamics with an open boundary: along each bond touching
∂−� from the outside, particles are created with rate ρ = e−�β and are
annihilated with rate 1, while inside �0 particles are conserved. Note that
an exchange of occupation numbers inside the ring �\�0 does not involve
any change in energy.

It is easy to verify that the stochastic dynamics defined by (1.9) is
reversible w.r.t. Gibbs measure corresponding to H .

We will denote by Pη0 the probability law of the Markov process
(ηt )t �0 starting at η0 and by Eη0 the corresponding expectation.

1.3. Definitions and Notation

In the sequel we use italic capital letters for subsets of �, script cap-
ital letters for subsets of X , and boldface capital letters for events under
the Kawasaki dynamics. We use this convention in order to keep the var-
ious notations apart.

In order to formulate our main results in Theorems 1 and 3, we need
some definitions.

1. Free particles and clusterized component
Suppose that the finite box �⊂Z

2 is sufficiently large.

• For x ∈�0, let nn(x)={y ∈�0 : |y−x|=1} be the set of nearest–
neighbor sites of x in �0.

• A free particle in η∈X is a site x ∈ η∩ ∂−� or a site x ∈ η∩�0
such that

∑
y∈nn(x)∩�0

η(y)= 0, i.e., a particle not in interaction with any
other particle (remember from (1.2) that particles in the interior boundary
∂−� have no interaction with other particles).
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We denote by ηfp the union of free particles in ∂−� and free particles in
�0 and by ηcl the clusterized part of η

ηcl :=η∩�0 \ηfp. (1.10)

2. Clusters, projections, and vacancies
Next we introduce a geometric description of the configurations in

terms of contours.

• Given a configuration η∈X , consider the set C(ηcl)⊂R
2 defined

as the union of the 1× 1 closed squares centered at the occupied sites
of ηcl in �0. The maximal connected components C1, . . . ,Cm (m ∈ N)
of C(ηcl) are called clusters of η. There is a one-to-one correspondence
between configurations ηcl⊂�0 and sets C(ηcl). A configuration η∈X is
characterized by a set C(ηcl), depending only on η ∩�0, plus possibly a
set of free particles in ∂−� and in �0. We are actually identifying three
different objects: η∈X , its support supp(η)⊂�, and the pair (C(ηcl), ηfp);
we write x ∈η to indicate that η has a particle at x ∈�.

• For η∈X , let |η| be the number of particles in η, γ (η) the Euclid-
ean boundary of C(ηcl), γ (η)= ∂C(ηcl); we denote by g1(η) (g2(η)) one
half of the horizontal (vertical) length of γ (η), i.e., one half of the num-
ber of horizontal (vertical) broken bonds in ηcl. Then the energy associ-
ated with η is given by

H(η)=−(U1+U2−�)|ηcl|+U1g2(η)+U2g1(η)+�|ηfp|. (1.11)

The maximal connected components of ∂C(ηcl) are called contours of η.

• Let p1(η) and p2(η) be the total lengths of horizontal and vertical
projections of C(ηcl), respectively. More precisely let rj,1={x∈Z

2 : (x)1=j}
be the j th column and rj,2={x ∈Z

2 : (x)2= j} be the j th row, where (x)1
or (x)2 denote the first or second component of x. We say that a line rj,1
(rj,2) is active if rj,1∩C(ηcl) �=∅ (rj,2∩C(ηcl) �=∅).
Let

π1(η) :={j ∈Z : rj,1∩C(ηcl) �=∅} (1.12)

and p1(η) := |π1(η)|. In a similar way we define the vertical projection
π2(η) and p2(η). We also call π1(η) and π2(η) the horizontal and vertical
shadows of ηcl, respectively.
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Note that g1, g2, π1, π2, p1, p2 are actually depending on η only through
ηcl, even though, for notational convenience, we omit the subscript cl in
their functional dependence.
Note that ηcl is not necessarily a connected set and so both the horizon-
tal and vertical projections π1(η), π2(η) are not in general connected. We
have obviously:

g′i (η) :=gi(η)−pi(η) � 0. (1.13)

• A single cluster C is called monotonic if gi(C)=pi(C) for i=1,2,
i.e., g1 and g2 equal, respectively, the horizontal and vertical side lengths
of the rectangle R(C) circumscribed to the unique cluster C. More gener-
ally, we call monotonic a configuration such that gi(η)=pi(η) for i=1,2.

• We write
s(η) := p1(η)+p2(η),

v(η) := p1(η)p2(η)−|ηcl|,
n(η) := |ηfp|.

(1.14)

Note that s(η) coincides with the semi-perimeter if η is a configuration
with a single monotonic cluster. It is immediate to show that v(η) is a
non-negative integer and that it is equal to zero if ηcl has a unique rectan-
gular cluster with semi-perimeter s(η); it represents the number of vacan-
cies in η. Define:

P1(η)=
⋃

j∈π1(η)

rj,1, P2(η)=
⋃

j∈π2(η)

rj,2 (1.15)

the minimal unions of columns and rows, respectively, in Z
2 containing

ηcl. By definition we have

P1(η)∩P2(η)⊇ηcl, (1.16)

where P1(η) ∩ P2(η) is, in general, the union of rectangles such that
|P1(η) ∩ P2(η)| = p1(η)p2(η). The vacancies of η are the sites in P1(η) ∩
P2(η)\ηcl.

3. Paths, boundaries, and hitting times
A path ω is a sequence ω=ω1, . . . , ωk (k∈N, ωi ∈X ) with P(ωi,ωi+1)>

0 for i= 1, . . . , k− 1. We write ω : η→ η′ to denote a path from η to η′,
namely with ω1=η and ωk=η′. A set A⊂X with |A|> 1 is connected if
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and only if for all η, η′ ∈A there exists a path ω : η→η′ such that ωi ∈A
for all i.

Given a non-empty set A⊂X , define its external and internal bound-
ary as, respectively,

∂+A={ζ /∈A : P(ζ, η)>0 for some η∈A}, (1.17)

∂−A={ζ ∈A : P(ζ, η)>0 for some η /∈A}, (1.18)

∂A :={(η̄, η) : η̄∈ ∂−A, η∈ ∂+A with P(η̄, η)>0} (1.19)

that is the set of moves exiting from A.
We define

Hmin(∂A) := min
(η̄,η)∈∂A

[H(η̄)∨H(η)] (1.20)

and we denote by (∂A)min the subset of ∂A where this minimum is
realized:

(∂A)min :={(η̄, η)∈ ∂A : H(η̄)∨H(η)=Hmin(∂A)}. (1.21)

Given a non-empty set A⊂X , define the first hitting time of A as

τA=min{t � 0: ηt ∈A}. (1.22)

4. Foliation of X
The configuration space X can be partitioned as

X =
|�|⋃

s=0

Vs , (1.23)

where

Vs ={η∈X : p1(η)+p2(η)= s} (1.24)

is the set of configurations with the sum of the shadows equal to s, called
the s-manifold.
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5. Minimax, saddles, and gates

• The bottom F(A) of a non-empty set A⊂X is the set of global
minima of the Hamiltonian H in A:

F(A)=
{
η∈A : H(η)=min

ζ∈A
H(ζ)

}
. (1.25)

For a set A whose points have the same energy, we denote (by an abuse
of notation) this energy by H(A).

• Given a function f :X →R and a subset A⊆X , we denote by

arg maxAf :=
{
η∈A : f (η)=max

ξ∈A
f (ξ)

}
(1.26)

the set of points where the maximum of f in A is reached.

• The communication height between a pair η, η′ ∈X is


(η, η′)= min
ω : η→η′

max
ζ∈ω

H(ζ ). (1.27)

• We call stability level of a state ζ ∈X the energy barrier

Vζ :=
(ζ,Iζ )−H(ζ), (1.28)

where Iζ is the set of states with energy below H(ζ):

Iζ :={η∈X : H(η)<H(ζ )}. (1.29)

We set Vζ :=∞ if Iζ is empty.

• We call set of V -irreducible states the set of all states with stabil-
ity level larger than V :

XV :={η∈X : Vη >V }. (1.30)

• The set of stable states is the set of the global minima of the
Hamiltonian

X s :=F(X ). (1.31)
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• The set of metastable states is given by

X m :=
{
η∈X : Vη= max

ζ∈X \X s
Vζ

}
. (1.32)

• We denote by (η→η′)opt the set of optimal paths i.e. the set of all
paths from η to η′ realizing the min–max in X , i.e.

(η→η′)opt :=
{
ω :η→η′ s.t. max

ξ∈ω
H(ξ)=
(η, η′)

}
. (1.33)

• The set of minimal saddles between η, η′ ∈X is defined as

S(η, η′)=
{
ζ ∈X : ∃ω∈ (η→η′)opt, ω� ζ : max

ξ∈ω
H(ξ)=H(ζ)

}
.

(1.34)

• Given a pair η, η′ ∈X , we say that W≡W(η, η′) is a gate for the
transition η→η′ if W(η, η′)⊆S(η, η′) and ω∩W �=∅ for all ω∈ (η→η′)opt.

• We say that W is a minimal gate for the transition η→η′ if it is a
gate and for any W ′ ⊂W there exists ω′ ∈ (η→η′)opt such that ω′ ∩W ′ =∅.
In words, a minimal gate is a minimal (by inclusion) subset of S(η, η′) that
is visited by all optimal paths.

6. Standard and domino rectangles

• We denote by R(l1, l2) the set of configurations whose single con-
tour is a rectangle R(l1, l2), with l1, l2∈N. For any η, η′ ∈R(l1, l2) we have
immediately

H(η)=H(η′)=H(R(l1, l2))=U1l2+U2l1− εl1l2, (1.35)

where

ε :=U1+U2−�. (1.36)

• A configuration η is s-minimal if it minimizes the energy in Vs ,
i.e., if it belongs to F(Vs)
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• Let

l̄=
⌈ U1−U2

U1+U2−�

⌉
, (1.37)

where �� denotes the integer part plus 1. For x∈Z, n∈N we denote as [x]n
the class x mod n in Zn. For any s > l̄+2, if s has the same parity as l̄ i.e.,
[s− l̄]2= [0]2, then we define the set of 0 -standard rectangles as R0-st(s)=
R(�1(s), �2(s)) with �1(s)−�2(s)= l̄, i.e., the set of rectangles with sides

�1(s)= s+ l̄

2
, �2(s)= s− l̄

2
for [s− l̄]2= [0]2. (1.38)

If s has the same parity as l̄ − 1 i.e., [s − l̄]2 = [1]2, we define the set of
1 -standard rectangles as R1-st(s)=R(�1(s), �2(s)) with �1(s)−�2(s)= l̄−1,
i.e., the rectangles with side lengths

�1(s)= s+ l̄−1
2

, �2(s)= s− l̄+1
2

for [s− l̄]2= [1]2 (1.39)

and for this value of s we call quasi standard and denote by Rq-st(s), the
rectangles.
We set

Rst(s)=
{

R0-st(s) if [s− l̄]2= [0]2,
R1-st(s) if [s− l̄]2= [1]2.

(1.40)

• Let 2 � l2 � l̄. A rectangle R(l1, l2) with l1= 2l2 is called 0-dom-
ino whereas one with l1 = 2l2 − 3 is called 0quasi-domino. In both cases
s= l1+ l2 is such that [s]3= [0]3. We denote by R0-dom(s) (R0q-dom(s)) the
set of 0-domino rectangles (0quasi-domino rectangles) with semiperimeter s.

Similarly a rectangle R(l1, l2) with l1=2l2−2 is called 1-domino and
one with l1 = 2l2 + 1 called 1quasi-domino. In both cases the semiperim-
eter s is such that [s]3= [1]3. The sets of these rectangles are denoted by
R1-dom(s) and R1q-dom(s)), respectively.

A rectangle R(l1, l2) with l1= 2l2− 1 is called 2-domino. In this case
[s]3= [2]3, and the set of these rectangles is denoted by R2-dom(s).

As it will be clear in Section 2.2; we do not need to introduce 2quasi-
domino rectangles (see Fig. 7). Note that for each s ∈ [4,3l̄] there exists
n-domino rectangles with n such that [s]3= [n]3. If s is such that n= 1,0
then there exists also a nquasi-domino rectangle.
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1.4. Main Results

Let

0={η∈X : η(x)=0∀x ∈�} (1.41)

be the configuration with � empty and

1={η∈X : η(x)=1 ∀x ∈�0, η(x)=0 ∀x ∈�\�0} (1.42)

be the configuration with �0 full and �\�0 empty.
We define:

l∗1 =
⌈

U1

U1+U2−�

⌉
, l∗2 =

⌈
U2

U1+U2−�

⌉
, (1.43)

s∗ := l∗1 + l∗2 −1, (1.44)

and

P :={η : n(η)=1, v(η)=�2(s
∗)−1, ηcl is connected, monotonic,

with circumscribed rectangle in R(�1(s
∗)+1, �2(s

∗))}
(1.45)

with li (s), i=1,2 defined as in (1.38) and (1.39) (recall (1.14)). See Fig. 1
for an example of configuration in P . From (3.7), it follows that H(η) is
constant on P . We write

� : = H(P)−H(0)=H(P)=U1l
∗
2 +U2(l

∗
1 −1)

−(U1+U2−�)l∗2 (l∗1 −1)+2�−U1. (1.46)

Fig. 1. Configurations in P .
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We introduce the following times:

θ0,1=max{t <τ1 : ηt =0}, (1.47)

θ0,P,1=min{t >θ0,1 : ηt ∈P}. (1.48)

As discussed heuristically in Section 2, the behavior of the model strongly
depends on the different values of the parameters. We will not actually
consider all the possible cases and we will not be interested in giving here
the full parameter regime for which our results hold. We will assume:

0<ε�U2 and U2 <U1 <2U2−2ε, (1.49)

where � means sufficiently smaller; for instance ε � U2/100 is enough.
Note that this is not a significant restriction since the case of large val-
ues of the critical sizes l∗1 , l∗2 is the relevant case from a physical point of
view. The isotropic case U1=U2 has been already treated in refs. 8 and 6.

The main results about the asymptotics of the tunnelling time and the
gate to stability are contained in the following:

Theorem 1. Let U1,U2,� be such that U2/(U1+U2−�) is not inte-
ger and (1.49) holds. Let � be a box with side L+ 2. For L sufficiently
large and for any δ >0,

lim
β→∞

P0
(
eβ(�−δ) � τ1 � eβ(�+δ)

) = 1, (1.50)

lim
β→∞

1
β

log E0τ1=�, (1.51)

and moreover if we define Tβ := inf{n � 1 : P0(τ1 � n) � 1− e−1} then,

lim
β→∞

P0(τ1 >tTβ)= e−t (1.52)

and

lim
β→∞

E0(τ1)

Tβ

=1. (1.53)
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Theorem 2. Let U1,U2,� be such that U2/(U1 + U2 − �) is not
integer and (1.49) holds. Let � be a box with side L+2. For L sufficiently
large,

lim
β→∞

P0
(
θ0,1 <θ0,P,1 <τ1

) = 1. (1.54)

Theorem 3. Let U1,U2,� be such that U2/(U1 + U2 − �) is not
integer and (1.49) holds. Let � be a box with side L+2 and let R� (l1,l2)

(R� (l1,l2)) be the set of configurations whose single contour is a rectan-
gle contained in (containing) a rectangle with sides l1, l2. Then, for L suffi-
ciently large,

if η∈R� (l∗1 −1, l∗2 −1) �⇒ lim
β→∞

Pη(τ0 <τ1)=1,

if η∈R� (l∗1 , l∗2 ) �⇒ lim
β→∞

Pη(τ1 <τ0)=1.
(1.55)

In words, Theorems 1–3 say the following:

– Theorem 1(1.50): For β→∞ the nucleation time from 0 to 1 behaves
asymptotically, in probability, as e�β+o(β).

– Theorem 1(1.51) and (1.52)): The nucleation time from 0 to 1 has
mean value asymptotically given, for large β, by e�β and its distribu-
tion, after a suitable rescaling, is asymptotically exponential.

– Theorem 2: The set P is a gate for the nucleation: all paths from the
metastable state 0 to the stable state 1 pass through this set with a
probability tending to 1 as β →∞. Note that we do not establish
in this theorem the minimality of the gate P (see definition above),
which would involve a much more detailed analysis.

– Theorem 3: l∗1 and l∗2 are the critical sizes, i.e., subcritical rectangles
shrink to 0, supercritical rectangles grow to 1.

2. HEURISTICS

2.1. Metastability: Static Heuristics

We will consider the regime

�∈ (U1,U1+U2), β−→∞, (2.1)

which corresponds to a metastable behavior. This is the analogue of the
non-conservative case discussed in ref. 9. In the grand-canonical Gibbs
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measure the configuration can be represented in terms of spin variables.
Indeed, after we make the substitution η(x)= (1+σ(x))/2 in (1.2), where
σ(x)∈{−1,+1} is the spin variable, we can write

H spin(σ ) = −U1

∑

(x,y)∈�∗
0,h

1+σ(x)

2
1+σ(y)

2

−U2

∑

(x,y)∈�∗
0,v

1+σ(x)

2
1+σ(y)

2
−�

∑

x∈�0

1+σ(x)

2

= −U1

4

∑

(x,y)∈�∗
0,h

σ (x)σ (y)

−U2

4

∑

(x,y)∈�∗
0,v

σ (x)σ (y)−
(
U1+U2−�

2

)∑

x∈�0

σ(x)+ c1,

(2.2)

where c1 is a constant. Then we have a spin Hamiltonian for anisotropic
Ising model (see ref. 9) with pair interaction J1 = U1/2, J2 = U2/2 and
magnetic field h=U1+U2−�.

The metastable behaviour for the non-conservative case in the spin
language occurs when h∈ (0, J1+J2), this corresponds to �∈ ((U1+U2)/2,

U1 +U2). The magnetic field vanishes when � = U1 + U2, which corre-
sponds to the condensation point of the lattice gas. Indeed at this point
the density of liquid and gas phase are

ρl(β)= 1+m∗(β)

2
, ρg(β)= 1−m∗(β)

2
, (2.3)

where m∗(β) is the spontaneous magnetization. A perturbative argument
based on low-temperature expansion, shows that

1−m∗(β)=2e−2(J1+J2)β(1+o(1)), as β→∞. (2.4)

Indeed 2(J1+J2) represents the formation energy of a unit square droplet
for h=0. This, via the identification J1=U1/2, J2=U2/2, shows that

ρg(β)= e−(U1+U2)β [1+o(1)], as β→∞. (2.5)

This can be identified as the density of the saturated vapor (in the sense of
logarithmic equivalence in β). Suppose that we slightly increase the den-
sity, avoiding however the appearance of liquid droplets. We can describe
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this situation by means of the so-called restricted ensemble (see refs. 2 and
7), namely, the gran-canonical Gibbs measure restricted to a suitable sub-
set of configurations, for instance, where all sufficiently large clusters are
suppressed. At low temperature this supersaturated vapor will stay rare-
fied, so it can be described as pure gas phase with strong mixing prop-
erties.

Let us make a rough calculation of the probability to see an l1 × l2
droplet of occupied sites centered at the origin. Under restricted ensemble,
which we denote by µ∗, we have

µ∗(l1× l2 droplet )�ρl1l2e(U1+U2)βl1l2−l2U1β−l1U2β, (2.6)

since ρ is close to the probability to find a particle at a given site and −U1
(resp. −U2) is the binding energy between particles at the neighboring hor-
izontal (resp. vertical) sites. Writing ρ= e−�β we obtain

µ∗(l1× l2 droplet )� e−β[(�−U1−U2)l1l2+U1l2+U2l1], (2.7)

where the exponent has a saddle point at

l1= U1

U1+U2−�
, l2= U2

U1+U2−�
. (2.8)

This means that droplets with side length l1 < l∗1 and l2 < l∗2 have a
probability that decreases in l1, l2 and droplets with side length (l1, l2) �
(l∗1 , l∗2 ) a probability that increases in l1, l2. This would leave to the con-
clusion that l∗1 , l∗2 are the side length of the critical droplet; this is known
to be false under Glauber dynamics (see ref. 9), moreover there are heuris-
tic indications that it is also false for Kawasaki dynamics in case of hight
anisotropy. This shows how naive is a pure static argumentation. Indeed
the dynamical mechanism for the transition between rectangular droplets
have an influence in establishing the tendency to grow or shrink.

The choice �∈ (U1,U1+U2) corresponds to (l∗1 , l∗2 )∈ (1,∞)× (1,∞),
i.e. to a non-trivial critical droplet size.

In physical terms, �∈(0,U1) represents the unstable gas, �∈(U1,U1+
U2) the metastable gas, �=U1+U2 the condensation point, and �∈ (U1+
U2,∞) the stable gas.

The most interesting part of the metastable regime is 0<ε�U2 with
ε=U1+U2−�, which corresponds to both l∗1 and l∗2 very large.



Anisotropy Effects in Nucleation 557

2.2. Dynamic Heuristics

What follows is a heuristic discussion aimed to characterize the nucle-
ation pattern. As we said in Section 1 the locally conservative character of
our dynamics makes difficult to determine, on rigorous grounds, the tube
of typical trajectories realizing the transition from metastability to stabil-
ity. However, we think that our heuristic arguments are quite convincing
but, for a full proof, some more effort is needed.
• Key transitions
We start with a coarse graining description: we will restrict ourselves to
determine the sequence of rectangles visited by typical trajectories. This
is justified since, starting from any configuration, the process will rela-
tively fast go to a rectangle and subsequently it will stay for a long period
inside a cycle that plays the role of a generalized basin of attraction of
this rectangle. The full tube should also specify the proper interpolation
between contiguous rectangles. Our heuristic discussion will also include
some information about these interpolations.

By the continuity properties of the dynamics it is reasonable to expect
that only transitions between neighboring rectangles have to be taken into
consideration.

More precisely, starting from a configuration η∈R(l1, l2), with l1, l2 � 2,
the possible successive rectangles in the tube have to belong to one of the fol-
lowing classes: R(l1 + 1, l2), R(l1, l2 + 1), R(l1 − 1, l2), R(l1, l2 − 1), R(l1 −
1, l2+1), and R(l1+1, l2−1). So we shall consider the following transitions:

from R(l1, l2) to R(l1, l2 + 1), corresponding to vertical growth,
that will be denominated add row and symbolically denoted by the arrow
↑ pointing north direction;

from R(l1, l2) to R(l1+1, l2), corresponding to horizontal growth,
that will be denominated add column and denoted by the arrow → point-
ing east;

from R(l1, l2) to R(l1, l2 − 1), corresponding to vertical contrac-
tion, that will be denominated remove row and denoted by the arrow ↓
pointing south;

from R(l1, l2) to R(l1 − 1, l2), corresponding to horizontal con-
traction, that will be denominated remove column and denoted by the
arrow ← pointing west;

from R(l1, l2) to R(l1−1, l2+1), corresponding to a readjustment
of the edges, making higher and narrower the rectangle by removing a col-
umn and simultaneously adding a row. It will be denominated column to
row and denoted by the arrow ↖ pointing northwest;
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from R(l1, l2) to R(l1+1, l2−1), corresponding to a readjustment
opposite to the previous one. It will be denominated row to column and
denoted by the arrow ↘ pointing southeast.

The transition from R(l1, l2) to R(l1− 1, l2 − 1) and R(l1+ 1, l2 + 1)

are not considered as elementary since, as it can be easily seen, a suit-
able combination of two of the above transitions takes place with larger
probability.

At first sight the optimal interpolation paths realizing the above tran-
sitions between contiguous rectangles are the ones depicted in Figs. 2–4.
Let us call �(1) the set of paths as the one depicted in Fig. 2. They are
the natural candidates to realize, in an optimal way, the transition ↑. For
the transition → we have an analogous set of paths that we call �(2).

Let us call B the time-reversal operator acting on finite paths; we
have for ω=ω1, . . . , ωT

Bω=ω′ with ω′i =ωT+1−i i=1, . . . , T . (2.9)

For the transition ↓ we choose the set of paths �(3) obtained by time-
reversal from the paths, analogous to the ones in �(1), that realize the
transition R(l1−1, l2) to R(l1, l2).

Similarly, for the transition ← we use the set of paths �(4) obtained
by time-reversal from the paths, analogous to the ones in �(2), that realize
the transition R(l1, l2−1) to R(l1, l2).

Fig. 2. The procedure to grow a column.
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Fig. 3. A path in �(5).

Fig. 4. A path in �̄(5).

The set of paths that we consider as the optimal interpolation for
the transition from R(l1, l2) to R(l1 − 1, l2 + 1) in the two cases l1 < l2,
l1 � l2, are called �(5) and �̄(5), respectively. A path in �(5) is represented
in Fig. 3. where each arrow corresponds to a move and the quantities
under the arrows represent the corresponding energy barriers �H . Dotted
arrows indicate sequences of moves. The maximal energy along the path
is reached in the configuration (2). A path in �̄(5) is represented in Fig. 4
where to simplify we indicate under the dotted arrows the sum of the cor-
responding �H . Along this path the maximal energy is reached in con-
figuration (5). In a similar way we define the optimal interpolation paths
�(7) and �̄(7) for the transition from R(l1, l2) to R(l1+1, l2−1). We call
canonical the paths in the above sets.

Given (l1, l2), to determine the most probable transition between
R(l1, l2) and one of the previous six contiguous rectangles, we will use the
criterion of the smallest energy barrier, defined as the difference between
the communication height and H(R(l1, l2)). We call energy barrier from η
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to η′ along the path ω= (ω1 = η, . . . ,ωn = η′) the difference between the
maximal height reached along this path and H(η). We compute the energy
barriers along the canonical paths and we use them to estimate the true
energy barriers. We denote by �H (add row) the energy barrier along the
paths in �(1); similarly for the other transitions.

From Figs. 2–4 via easy computations, we get:

�H (add row) =2�−U2,

�H (add column) =2�−U1,

�H (remove row) = ε(l1−2)+U1+U2,

�H (remove column) = ε(l2−2)+U1+U2,

�H (row to column) =� if l1 <l2,

�H (row to column) =U1+U2+ ε(l1− l2) if l1 � l2,

�H (column to row) =�−U2+U1 if l1 >l2,

�H (column to row) =�−U2+U1+ ε(l2− l1+1) if l1 � l2.

(2.10)

These estimated energy barriers are, of course, larger than or equal
to the true ones; the equality does not hold in general, since the above
canonical paths sometimes happen to be non-optimal. For example, a
deeper analysis leads to the conclusion that to add a row, instead of using
a path in �(1), it is more convenient to compose �(2) and �(5), resp. �̄(5),
when l1 <l2, resp. l1 � l2.

Let us now make a comparison between the estimated energy bar-
riers appearing in equation (2.10). For l1 � l2, we can easily check that
�H (row to column) � U1+U2 =�+ ε is the smallest estimated energy
barrier. So in the sequel we will consider only the case l1 >l2.

For l1 >l2 we consider two cases:

• U1 <2U2− ε, that we refer to as “weak anisotropy”, where, since

�−U2+U1 <2�−U1 <2�−U2 and

U1+U2+ ε(l2−2)<U1+U2+ ε(l1−2), (2.11)

we have only to compare �H (column to row), �H (remove column),
and �H (row to column). We have

�H (remove column)<�H (column to row) ⇐⇒ l2 � l̄, (2.12)

�H (remove column) � �H (row to column) ⇐⇒ 2l2−2 � l1, (2.13)
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�H (row to column)<�H (column to row) ⇐⇒ l1− l2 � l̄−2.

(2.14)
Summarizing we have that: in the set A={l2 � l̄, l1 >2l2−2} the min-

imal estimated energy barrier is �H (remove column);

in the set B={l2 > l̄, l1 >l2+ l̄−2} the minimal estimated energy
barrier is �H (column to row);

in the set C={l1 � l2 + l̄− 2, l1 < 2l2 − 2} the minimal estimated
energy barrier is �H (row to column).

in the set D={l2 � l̄, l1=2l2−2} we have degeneracy of the mini-
mal estimated energy barrier: �H (remove column)= �H (row to column).

Note that the set C coincides with the set {l2 � l̄, l1 <2l2−2} ∪ {l2 >

l̄, l1 � l2+ l̄−2}, so that A∪B ∪C∪D={l1 >l2}.
We represent R(l1, l2) as points in Z

2 of coordinates l1, l2 (represent-
ing, respectively, the horizontal and vertical edges). Emerging from any
representative point, we plot the arrows corresponding to transitions with
minimal �H between R(l1, l2) and contiguous rectangles. In Fig. 5 we
draw this system of arrows.

Note that the multiplicity of the arrows emerging from a point, cor-
responding to degeneracy of the minimal �H , takes place only in the set
D. In the figure the southeast–northwest arrows ↘↖ represent the superpo-
sition of two arrows ↘ and ↖.

• U1 >2U2− ε, corresponding to “strong anisotropy” where, since

2�−U1 <2�−U2, 2�−U1 <�−U2+U1 and

U1+U2+ ε(l2−2)<U1+U2+ ε(l1−2), (2.15)

by (2.10), we deduce that we have only to compare �H (remove column),
�H (add column), and �H (row to column). We get

�H (remove column)<�H (add column) ⇐⇒ l2 <l∗2 , (2.16)

�H (row to column)<�H (add column) ⇐⇒ l1 <l2+ l∗2 −2. (2.17)

Using 2.13 we have immediately that:

in the set A′ = {l2 � l∗2 − 1, l1 > 2l2 − 2} the minimal estimated
energy barrier is �H (remove column);
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Fig. 5. Weak anisotropy: minimal transitions and tube of typical trajectories.

in the set B ′ = {l1 <l2+ l∗2 − 2, l1 < 2l2− 2} the minimal estimated
energy barrier is �H (row to column);

in the set C′ = {l2 � l∗2 , l1 � l2 + l∗2 − 2} the minimal estimated
energy barrier is �H (add column).

in the set D′ = {l2 � l∗2 − 1, l1 = 2l2 − 2} we have degeneracy
of the minimal estimated energy barrier: �H (remove column) =
�H (row to column)

Note that B ′ = {l2 � l∗2 − 1, l1 < 2l2− 2} ∪ {l2 � l∗2 , l1 < l2+ l∗2 − 2}, so
that again A′ ∪B ′ ∪C′ ∪D′ = {l1 >l2}.

We visualize these results in Fig. 6, using the same graphical repre-
sentation introduced in the case weak anisotropy.

In the weak anisotropic case, from Fig. 5, it is evident that in the
plane (l1, l2) there is a region T , represented in the figure, which is attrac-
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Fig. 6. Strong anisotropy: minimal transitions and tube of typical trajectories.

tive in the sense that if we follow the oriented paths given by the sequences
of arrows emerging from every point outside T we end up inside T . The
region T consists of three parts: T1={(l1, l2): l2 � l̄ and 2l2−3 � l1 � 2l2−
1} containing domino shape rectangles, T2={(l1, l2): l2 > l̄ and l2+ l̄−1 �
l1 � l2 + l̄} containing standard rectangles (see Section 1.3 point 6) and
T3={(l1, l2): l1=L and l2 � L− l̄}.

Let us now consider the arrows inside the region T . From each η∈T1,
with l1=2l2−2, as a consequence of the degeneracy �H (remove column)=
�H (row to column), we have two exiting arrows, one pointing to η′ ∈
R(l1− 1, l2) and the other pointing to η′′ ∈R(l1+ 1, l2− 1). Subsequently,
starting from η′ the minimal estimated �H is unique and it corresponds
to an arrow pointing to R(l1, l2 − 1); analogously starting from η′′ the
minimal �H is unique and it corresponds to a arrow also pointing to
R(l1, l2−1) (see Fig. 7).

In T2, for each value of the semi-perimeter s, there are pairs of config-
urations (η, η′) such that the minimal among the estimated energy barriers
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Fig. 7. Minimal transitions inside T1, T2 with l2 <l∗2 , T2 with l2 � l∗2 and T3.

starting from η corresponds to the transition from η to η′ and conversely
the minimal estimated energy barrier from η′ corresponds to the transition
from η′ to η. So inside T2 there are pairs of arrows forming two-states
loops that we represent as ↘↖. This suggests that in T2 a more detailed
study is necessary, based on the analysis of suitable cycles containing the
above described loops. These cycles represent a sort of generalized basin
of attraction of the standard rectangles contained in the loops: they are
the maximal cycles containing a unique standard rectangle. We do not
develop in this paper the analysis of these cycles since their structure is
quite complicated and they are very big especially close to the critical
size (l∗1 , l∗2 ). These cycles contain, among others, rectangular configurations
and in each cycle all the rectangular configurations have the same semi-
perimeter s, i.e., belong to the same manifold Vs . We just make a guess on
the transitions leaving these cycles through the points of minimal energy
in their boundary; we draw in our picture the arrows between rectangu-
lar configurations corresponding to these most probable exits. It turns out
that these arrows are horizontal pointing east if l2 � l∗2 and pointing west
if l2 <l∗2 (see Fig. 7). In both cases these horizontal arrows point to con-
figurations which are again in the set T , so that we can iterate the argu-
ment to analyze all the arrows in T . Thus we associate to the loops ↘↖ in
the picture cycles containing rectangles in Vs and transitions given by the
horizontal arrows. In T3 we can argue like in T2 (see Fig 7).

It is natural at this point to distinguish two parts in the set T : the
subcritical part Tsub corresponding to T1 plus the part of T2 with horizon-
tal arrows pointing west, i.e., with l2 < l∗2 and the supercritical part Tsup,
corresponding to the configurations in T2 with horizontal arrows pointing
east, i.e., with l2 � l∗2 and T3.

Let us now summarize our heuristic discussion in the weakly aniso-
tropic case. We expect that every rectangle outside T is attracted by T ;
the configurations in Tsub are subcritical in the sense that they tend to
shrink along T following standard or domino shape, depending on l2;
configurations in Tsup are supercritical in the sense that they tend to grow
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following standard shapes in T2 and a sequences of rectangles with bases
L− 1 or L in T3. Moreover to every loop of arrows in T2 we associate a
permanence set containing rectangles in a given manifold Vs .

This heuristical discussion provides a description of the tube of typical
nucleating path. Suppose first to consider the typical paths going from the
maximal subcritical rectangle to 0. From the discussion on the subcritical
part of T2 we have that the sequence of cycles corresponding to the loops
↘↖, connected by the horizontal arrows pointing west define a coarse grained
cycle path corresponding to the first part of the tube of typical trajectories
going to 0. Looking at T1 we see that there are no loops there; we can asso-
ciate to each rectangular configuration η in T1 the maximal cycle containing
η and not containing other rectangular configurations. By using the arrows
of the figure we obtain, in this way, a coarse grained cycle path correspond-
ing to the domino part of the tube. The coarse graining of these cycle paths
can be resolved by introducing a suitable interpolation between rectangular
configurations corresponding to each arrow in the picture, obtaining, in this
way a family of true cycle paths, Tsub, describing the tube of typical paths
going from the maximal subcritical rectangle to 0.

A similar discussion can be applied to the study of the tube of typi-
cal paths going from the minimal supercritical rectangle to 1 obtaining in
the same way the family of cycle paths Tsup.

The tube of the typical nucleating paths describing the first excursion
from 0 to 1, can be obtained by applying general arguments based on
reversibility and by providing a suitable interpolation between the maxi-
mal subcritical rectangle and the minimal supercritical one. More precisely
to obtain the typical tube from 0 to 1 we apply the time reversal opera-
tor B (see (2.9)), to the tube Tsub and we join it to Tsup by means of this
interpolation. These interpolations between rectangular configurations can
be obtained by using the reference path ω∗ described in Section 3.2; ω∗
can be considered as a representative of typical nucleation path.

Some aspects of the behavior that we have heuristically described are
rigorously discussed in this paper; in particular we determine a gate P for
the transition between 0 and 1 (see Theorem 2) and we give a sufficient
condition to discriminate subcritical and supercritical standard rectangles
(see Theorem 3).

In the strongly anisotropic case, from Fig. 6, it is evident that in the
plane (l1, l2) there is a connected attractive region T ′ consisting of three
parts T ′1 ={(l1, l2) : l2 < l∗2 and 2l2− 3 � l1 � 2l2− 1} ∪R(2l∗2 − 3, l∗2) con-
taining domino shape rectangles, T ′2={(l1, l2) : l2= l∗2 and l2+ l∗2 −2 � l1 <

L}, and T ′3={(l1, l2) : l∗2 � l2 and L−1 � l1 � L}.
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The properties of T ′1 can be discussed in analogy with the weakly aniso-
tropic case. For every configuration in T ′2 the minimal estimated energy
barrier is �H (add column), which implies that the rectangles in T ′2 will
indefinitely grow in the horizontal direction until they become a complete
horizontal strip with length L. In T ′3 the minimal estimated energy barrier
is �H (add row), which implies that every horizontal strip with l1=L will
indefinitely grow in the vertical direction until it covers the whole box.

As in the previous case we can deduce from this discussion a conjec-
ture on the tube of typical paths during the first excursion from 0 to 1.

As far as the strongly anisotropic case is concerned we do not have
rigorous results; in particular we do not know any gate for the transition
from 0 to 1 but we expect that the first supercritical rectangular configura-
tion is contained in R(2l∗2 , l∗2 ). We can construct, like before, a cycle path
T ′

sub describing the tube of typical paths going from the maximal subcrit-
ical rectangles in R(2l∗2 − 3, l∗2 )∪R(2l∗2 − 1, l∗2 − 1) to 0 and a cycle path
T ′

sup going from the minimal supercritical rectangles in R(2l∗2 − 2, l∗2 ) to
1. Like in the weakly anisotropic case the tube of typical nucleating paths,
describing the first excursion from 0 to 1, can be obtained by suitably
joining the time-reversed of T ′

sub with T ′
sup. Summarizing: the nucleation

pattern in the strongly anisotropic case contains a sequence of increasing
domino shaped rectangles up to R(2l∗2 , l∗2 ); then a sequence of rectangles
with l2 = l∗2 and l1 going up to L (the size of the container); finally a
sequences of horizontal strips whose width grows from l∗2 to L. We can say
that the nucleation pattern, in the strongly anisotropic case, is very similar
to the one that we would have for non-conservative Glauber dynamics for
any anisotropy.

3. PROOF OF THE THEOREMS

The proofs of Theorems 1 and 2 are based on the following results
proved in ref. 11 on the asymptotic of tunnelling time and on the gates in
the general setup of reversible Markov chains.

Theorem 4. Let η0∈X m and let �̄ be the stability level of the meta-
stable state η0, i.e., �̄ :=Vη0 . Then, for any δ >0, there exist β0 and K >0
such that for any β >β0

Pη0(τX s <eβ(�̄−δ))<e−Kβ. (3.1)

Moreover

lim
β→∞

1
β

ln Pη0(τX s >eβ(�̄+δ))=−∞ (3.2)

i.e., this last probability is super-exponentially small in β.
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Theorem 5. With η0 and �̄ as in the hypothesis of Theorem 4, we
have:

lim
β→∞

1
β

log Eη0τX s = �̄. (3.3)

Moreover, if η0 is the unique metastable state, η0=X m, and if we define
Tβ := inf{n � 1 : Pη0(τX s � n) � 1− e−1} then, for any δ >0,

lim
β→∞

Pη0(τX s >tTβ)= e−t (3.4)

and

lim
β→∞

Eη0(τX s)

Tβ

=1. (3.5)

Theorem 6. For any pair of states η, ξ , for any gate W≡W(η, ξ)⊆
S(η, ξ) for the transition η→ ξ , there exists c>0 such that

Pη(τW >τξ ) � e−βc (3.6)

for sufficiently large β.

Theorems 1 and 2 are an immediate consequence of these results if we
prove the following:

(a) H(P)=:�=
(0,1),

(b) there exists �0 <� such that X�0 ⊆{0,1},
(c) P is a gate for the transition 0→1.

Point (a) means that we are able to compute explicitly the communi-
cation height between 0 and 1.

Point (b) means that each configuration η �∈ {0,1} is �0-reducible i.e.,
we can find a configuration with smaller energy, η′ ∈ Iη, with 
(η, η′) �
H(η)+�0. In other words, there are no too deep wells in the energy land-
scape, no deeper than the well with bottom 0. We will call reduction this
step of the proof.

To prove (a) and (c) the general strategy is to find a suitable set of
states B containing 0 and not containing 1 so that ∂B has to be crossed by
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every path going from 0 to 1 (see Section 3.3). Moreover we find a refer-
ence path ω∗ : 0→1 (see Section 3.2) such that the maximum of the energy
in ω∗ is reached when crossing ∂B and this maximal energy in ω∗ is equal
to Hmin(∂B). As shown in Section 3.4, these two ingredients are sufficient
to determine the communication height 
(0,1). Moreover by characteriz-
ing geometrically the moves producing the crossing of ∂B, we will obtain
the gate for the transition 0→1.

In Section 3.5 we will prove point (b) and we will also easily show
that (a) and (b) imply that �̄ := V0 =
(0,1)= � and 0= X m and 1=
X s, (see definitions (1.31) and (1.32)), if the side L of the volume � is
large enough. Theorems 1 and 2 are therefore immediate consequences of
Theorems 4–6.

In Section 3.1 we prove a preliminary result on configurations of min-
imal energy at given s.

The proof of Theorem 3 is obtained in Section 3.6

3.1. Configurations of Minimal Energy at s Fixed

Lemma 7. For any configuration η:

H(η)=H(R(p1(η),p2(η)))+ εv(η)+U1g
′
2(η)+U2g

′
1(η)+n(η)� (3.7)

with ε=U1+U2−� and g′i defined in (1.13).

Proof.

H(η) = −U1

∑

(x,y)∈�∗
1

η(x)η(y)−U2

∑

(x,y)∈�∗
2

η(x)η(y)+�
∑

x∈�

η(x)

= −(U1+U2)
∑

x∈�

ηcl(x)+U1g2(η)+U2g1(η)

+�
∑

x∈�

ηcl(x)+�n(η) (3.8)

by definition of g′1(η), g′2(η) this last expression is given by

U1(p2(η)+g′2(η))+U2(p1(η)+g′1(η))− ε|ηcl|+�n(η)

=H(R(p1(η),p2(η)))+ ε(p1(η)p2(η)−|ηcl|)
+U1g

′
2(η)+U2g

′
1(η)+n(η)�. (3.9)
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We will denote by pmin(η) the minimum between p1(η) and p2(η).
The main property of standard rectangles is summarized by the fol-

lowing proposition.

Proposition 8. (a) For all s > l̄+2 a configuration is s-minimal, i.e.,
it is a configuration of minimal energy in Vs , if and only if it is a standard
rectangle in Rst(s):

F(Vs)=Rst(s). (3.10)

(b) For all s > l̄+2, the configuration of minimal energy in the set

A(s) :={η∈Vs : v(η) � pmin(η)−1} (3.11)

are the following:

F(A(s)) = {η∈Vs : v(η)=�2(s−1)−1, n(η)=g′1(η)=g′2(η)=0

connected, with circumscribed rectangle in

R(�1(s−1)+1, �2(s−1))} (3.12)

and consequently we have

H(F(A(s)))=H(Rst(s−1))+�−U1. (3.13)

Proof. To prove (a) we have first to prove that a configuration of
minimal energy in Vs is a single rectangle without free particles; this part
of the proof clearly does not require the condition s > l̄ + 2. Indeed by
(3.7), since for any η the quantities v(η), g′1(η), g′2(η), n(η) are non-negative
integers, we have that H(η) � H(R(p1(η),p2(η))), where the identity holds
only if v(η)= g′1(η)= g′2(η)= n(η)= 0. On the other side, v(η)= g′1(η)=
g′2(η)= n(η)= 0 implies that η is a unique connected cluster since other-
wise, either g′1(η)+ g′2(η) > 0 or v(η) � p1(η) ∨ p2(η). Indeed if we can
decouple η into two disconnected components η=η0∪ (η\η0) with g′1(η)+
g′2(η)= 0, then we have that P1(η0)∩P2(η\η0) and P2(η0)∩P1(η\η0) are
vacancies of η, so that the number of vacancies v(η) can be estimated by

v(η) � |P1(η0)∩P2(η\η0)|+ |P2(η0)∩P1(η\η0)| � p1(η)∨p2(η).

(3.14)

Now if η is a unique connected cluster, since v(η)= 0, it must coincide
with its circumscribed rectangle R(p1(η),p2(η)). In conclusion we have
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proved that v(η)=g′1(η)=g′2(η)=n(η)=0 if and only if η is a unique rect-
angle without free particles.

We have to prove now that, to minimize the energy, the rectangular
configuration must be a standard rectangle. We will write the energy of a
rectangle (see (1.35)) as sum of two functions H1(s) and H2(d), where s=
l1+ l2 and d= l1− l2. So, if we substitute in (1.35) l1= (s+ d)/2 l2= (s−
d)/2, we have

H(R(l1, l2))=H1(s)+H2(d) :=
[
(U1+U2)

s

2
− ε

4
s2

]
+

[
(U2−U1)

d

2
+ ε

4
d2

]
.

(3.15)

Since we have to minimize the energy when s is constant we can neglect
H1(s) and minimize the function H2(d). Indeed, since the difference and
the sum of two integers belong to the same parity class, we have:

min
l1,l2 �1, l1,l2∈N, l1+l2=s

H(R(l1, l2))=H1(s)+ min
d∈Z, |d|� s−2, [d]2=[s]2

H2(d).

(3.16)

As a function on R, H2(d) has its minimum in d0 = (U1−U2)/ε, l̄− 1 <

d0 < l̄. Moreover, its graph is a parabola symmetric w.r.t. the axis x= d0,
so H2(d) : N→R has minimum in d ∈ {l̄− 1, l̄} (see (1.37)). For any value
of s > l̄+ 2 only one of these two values of d is acceptable, the one that
has the same parity as s.

For any value of s > l̄+2 with [s]2= [l̄]2 we have d= l̄ so that

F(Vs)=R
( s+ l̄

2
,
s− l̄

2

)
(3.17)

and we note that R((s+ l̄)/2, (s− l̄)/2)=R0-st(s).
In the other case, for any s > l̄+2 with [s]2 �= [l̄]2 we have d= l̄−1 so

that

F(Vs)=R
( s+ l̄−1

2
,
s− l̄+1

2

)
(3.18)

and we note that R((s+ l̄−1)/2, (s− l̄+1)/2)=R1-st(s).
This concludes the proof of part (a).
To prove (b) we first prove that a configuration of minimal energy in

A(s + 1) is a single connected and monotonic cluster without free parti-
cles with circumscribed rectangle R(l1, l2) with l1 = p1(η) and l2 = p2(η)
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and l1+ l2= s+1 and with a number of vacancies v(η)=pmin(η)−1. Also
in this case, this part of the proof clearly does not require the condition
s > l̄+ 2. Indeed by (3.7), since for any η the quantities g′1(η), g′2(η), n(η)

are non-negative integers and v(η) � pmin(η)− 1, we have that H(η) �
H(R(p1(η),p2(η))) + ε(pmin(η) − 1)), where the identity holds only if
g′1(η)=g′2(η)=n(η)=0 and v(η)=pmin(η)−1.

But in the case g′1(η)= g′2(η)= n(η)= 0 and v(η)= pmin(η)− 1, the
configuration η is a single connected and monotonic cluster without free
particles with circumscribed rectangle R(l1, l2) with l1 = p1(η) and l2 =
p2(η) and with a number of vacancies v(η)= l1∧ l2−1. Indeed, as shown
in the proof of point (a), if η is not a unique connected cluster, either
g′1(η)+g′2(η)>0 or v(η) � p1(η)∨p2(η).

We have now to find the values of the projections l1 and l2 minimiz-
ing the energy in A(s+1).

If η is such that l1 <l2 then η cannot minimize the energy in A(s+1).
Indeed we have

H(η) � U1l2+U2l1− εl1l2+ ε(l1−1)

> U1l1+U2l2− εl1l2+ ε(l1−1)=H(η′), (3.19)

where η′ is a configuration given by a rectangle with horizontal side of
length l2−1, and vertical side l1 plus a protuberance on the vertical side,
so that p1(η

′)+p2(η
′)= s+1 and v(η′)=pmin(η′)−1.

If η is such that l1 � l2 then

H(η) � U1l2+U2l1− ε(l1l2− l2+1)=: H̄ (l1, l2) (3.20)

so that

min
η∈A(s+1)

H(η) � min
l1+l2=s+1, l1 � l2 �1

H̄ (l1, l2). (3.21)

Defining the new variables s+1= l1+ l2 and d= l1− l2 if we note that

H̄ (l1, l2)=H ′
1(s+1)+H ′

2(d), (3.22)

where

H ′
1(s+1)=−ε

4
(s+1)2+ 1

2
(U1+U2+ ε)(s+1)+ ε, (3.23)

H ′
2(d)= ε

4
d2− 1

2
(U1−U2+ ε)d (3.24)
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it is sufficient to find the value of d minimizing H ′
2(d), since

min
l1+l2=s+1, l1 � l2 �1

H̄ (l1, l2)=H ′
1(s+1)+ min

d:[d]2=[s+1]2 0<d � s−1
H ′

2(d).

(3.25)

As a function on R, H ′
2(d) has its minimum in d0+1= ((U1−U2)/ε)+1.

Moreover, its graph is a parabola symmetric w.r.t. the axis x= d0+ 1, so
H ′

2(d) : N→R has minimum in d= l̄ or in d= l̄+1. For any value of s >

l̄+2 only one of these two values of d is acceptable, the one that has the
same parity as s+1.

So for any s with [s]2 = [l̄]2 we have that the minimum is obtained
for d = l̄ + 1, corresponding to the values l1 = (s+1+ l̄+1)/2 and l2 =
(s+1− l̄−1)/2. Note that l1= ((s+ l̄)/2)+1=�1(s)+1 and l2= (s− l̄)/2=
�2(s). Equation (3.25) becomes

min
l1+l2=s+1, l1 � l2 �1

H̄ (l1, l2)

= H
(
R

( s+1+ l̄+1
2

,
s+1− l̄−1

2

))
+ ε

( s+1− l̄−1
2

−1
)

= U1

( s− l̄

2

)
+U2

( s+ l̄

2

)
+U2− ε

[( s− l̄

2

)( s+ l̄

2

)]
− ε

= H
(
R0-st(s)

)
+U2− ε=H

(
R0-st(s)

)
+�−U1. (3.26)

And for any s with [s]2 �= [l̄]2 we have that the minimum is obtained for
d = l̄, corresponding to the values l1 = (s+1+ l̄)/2 and l2 = (s+1− l̄)/2.
Note that l1 = ((s+ l̄−1)/2)+ 1= �1(s)+ 1 and l2 = (s− l̄+1)/2= �2(s).
Equation (3.25) becomes

min
l1+l2=s+1, l1 � l2 �1

H̄ (l1, l2) = H
(
R

( s+1+ l̄

2
,
s+1− l̄

2

))
+ ε

( s+1− l̄

2
−1

)

= U1

( s− l̄+1
2

)
+U2

( s+ l̄−1
2

)

+U2− ε
[( s− l̄+1

2

)( s+ l̄−1
2

)]
− ε

= H(R1-st(s))+�−U1 (3.27)

that ends the proof of part (b).
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3.2. Reference Path

We construct now a particular reference path ω∗ : 0→ 1 (see proof of
theorems 1 and 2). It will be given by a particular sequence of growing dom-
ino and standard rectangles, such that the maximum of the energy on ω∗,
{arg maxω∗ H }, is reached on particular configurations given by a rectangle
R(l∗1 −1, l∗2 ) with a protuberance on the shorter side and a free particle.

We will prove in Section 3.4 that ω∗ ∈ (0→1)opt so that {arg maxω∗H }∈
S(0,1).

We want to recall here that in this paper we get only a partial solu-
tion to the problem of the determination of the tube of typical paths, i.e.,
the set of paths followed by the process with high probability during the
transition from 0 to 1. It is easy to prove that a typical path is in the set
(0→1)opt. Note that this set is much larger than the tube of typical paths;
we have a lot of freedom in the construction of the reference path, espe-
cially far from its maximal energy value. However, we conjecture that the
path ω∗, that we are going to construct, is not only optimal but also it
suggests the structure of the tube of typical paths.

The idea of the construction of ω∗ is the following: we first con-
struct a skeleton path {ω̄s}2L

s=2 given by a sequence of rectangles with
semi-perimeter s. For s � 3l̄ these are domino rectangles (of type 0, 1, or
2) and for s � 3l̄ these are standard rectangles (of types 0 or 1). Obviously
ω̄s is not a path in the sense that the transition from ω̄s to ω̄s+1 can not be
given in a single step of the dynamics, since ω̄s and ω̄s+1 are rectangles. Thus
to obtain a path we have to interpolate each transition of the skeleton path
ω̄. This is done in two different steps. We first introduce between ω̄s and
ω̄s+1 a sequence of configurations ω̃s,1, . . . , ω̃s,is given by ω̄s plus a growing
row or column; again these configurations are given by a single increasing
droplet. This step is non-trivial since, as explained in more detail later on,
there are cases in which to grow a row we first grow a column and then
we move this column to a new row with a motion along the border of the
droplet. Indeed it turns out that this is more convenient from an energetic
point of view and this strategy is crucial near the exit from B (see proof of
Theorems 1 and 2). The last interpolation, to obtain from the sequence of
configurations ω̃s,i a path ω∗, i.e., with P(ω∗j ,ω

∗
j+1)> 0, consists in insert-

ing between every couple of consecutive configurations in ω̃ for which the
cluster is increased by one particle, a sequence of configurations with a new
particle initially created at the boundary of the box and then brought to the
correct site with a sequence of consecutive moves of this free particle.

Skeleton: ω̄.
Let us construct a sequence of rectangular configurations ω̄ = {ω̄s}

with s=0, . . . ,2L, namely,
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ω̄1=0, ω̄2={x0}, . . . , ω̄2L=F(X )∈1, (3.28)

where x0 is a given site in �0 and ∀s ω̄s ⊂ ω̄s+1.

Step a. For any s � 3l̄, {ω̄s} is a growing sequence of domino rectangles,
depending on the value of s. Indeed, if [s]3= [0]3 in Z3, i.e., s=3l2
for some l2 � l̄, we have ω̄s ∈R(2l2, l2) is a 0-domino rectangle; if
[s]3= [1]3 in Z3, i.e., s= 3l2− 2 for some l2, we have ω̄s ∈R(2l2−
2, l2) is a 1-domino rectangle; if [s]3= [2]3 in Z3, i.e., s=3l2−1 for
some l2, we have ω̄s ∈R(2l2−1, l2) is a 2-domino rectangle.

Step b. For 3l̄ � s � 2L− l̄, {ω̄s} is a growing sequence of standard rectan-
gles if [s− l̄]2= [0]2 in Z2, i.e., s=2l2+ l̄ for some l2 � l̄, we have
ω̄s ∈R(l2 + l̄, l2) is a 0-standard rectangle; if [s − l̄]2 = [1]2 in Z2,
i.e., s= 2l2+ l̄− 1 for some l2 � l̄, we have ω̄s ∈R(l2+ l̄− 1, l2) is
a 1-standard rectangle.
Note that if l2= l̄ the 2-domino and 1-standard shape coincide.

Step c. For s � 2L− l̄, {ω̄s}∈R(L, s−L).

First interpolation: ω̃.
Given a choice for ω̄s , we can construct the path ω̃s,i such that ω̃s,0=

ω̄s and insert between each pair (ω̄s, ω̄s+1), ∀s a sequence of configura-
tions ω̃s,i for i=0,1, . . . , is .

Step a.1. If s � 3l̄ and [s]3 = [1]3 add a vertical column as in Fig. 2
passing from ω̃s,0 ∈ R(2l2, l2 + 1) to the 2-domino rectangle
ω̃s,is ∈R(2l2+1, l2+1). More precisely ω̃s,1 is the configuration
obtained creating a particle on the column (as in Fig. 2). We
repeat this step for other l2− 1 particles that are created in the
same column, so the configuration ω̃s,is ∈R(2l2 + 1, l2 + 1) is a
2-domino rectangle.

Step a.2. If s � 3l̄ and [s]3= [2]3 add a vertical column as in Fig. 2 pass-
ing from ω̃s,0∈R(2l2−1, l2) to ω̃s,is ∈R(2l2, l2) that is a 0-dom-
ino rectangle.

Step a.3. If s � 3l̄ and [s]3= [0]3 add a vertical column as in Fig. 2 pass-
ing from ω̃s,0 ∈R(2l2, l2) to the quasi-domino rectangle ω̃s,l2 ∈
R(2l2+1, l2) as described in the previous case a.1. Then use the
path described in Fig. 4 to define the path from ω̃s,l2 ∈R(2l2+
1, l2) to ω̃s,is ∈R(2l2, l2+1) that is a 1-domino rectangle.

For s � 3l̄, we can insert between each pair of standard rectangles
(ω̄s, ω̄s+1), a sequence of configurations ω̃s,i for i=0,1, . . . , is as follows.

Step b.1. If 3l̄ � s � 2L− l̄ and [s − l̄]2 = [1]2 we have ω̄s ∈R(l2 + l̄ −
1, l2) for some value of l2, add a vertical column as in Fig. 2
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to obtain ω̃s,is ∈R(l2+ l̄, l2) that is a 0-standard rectangle in the
same way as described in step a.1.

Step b.2. If 3l̄ � s � 2L− l̄ and [s− l̄]2= [0]2 we have ω̄s ∈R(l2+ l̄, l2), add
a vertical column as in Fig. 2 to obtain ω̃s,l2 ∈R(l2 + l̄ + 1, l2)

a quasi-standard rectangle. Then we pass from ω̃s,l2 ∈R(l2+ l̄+
1, l2) to ω̃s,is ∈ R(l2 + l̄, l2 + 1) that is a 1-standard rectangle
using the path described in Fig. 4, in the same way as in step
a.3.

Step c.1. Use first the path given by the time-reversal of the one repre-
sented in Fig. 4 to define a first interpolation between R(L, s−
L)= ω̄s and R(L−1, s−L+1), and then use the path described
in Fig. 2 to add a column to R(L− 1, s − L+ 1) in order to
reach R(L, s−L+1)= ω̄s+1.

Second interpolation: ω∗.
For any pair of configurations (ω̃s,i , ω̃s,i+1) such that |ω̃s,i |< |ω̃s,i+1|,

by construction of the path ω̃s,i the particles are created along the exter-
nal boundary of the clusters. So there exists x1, . . . , xji

a connected chain
of nearest–neighbor empty sites of ω̃s,i such that x1 ∈ ∂−� and xji

is the
site where is located the additional particle in ω̃s,i+1. Define the following:

ω∗s,i,0= ω̃s,i , ω∗s,i,ji
= ω̃s,i+1 ∀s=0, . . . ,2(L+2). (3.29)

Insert between each pair (ω̃s,i , ω̃s,i+1), a sequence of configurations ω∗s,i,j ,
for j=1, . . . , ji−1, where the free particle is moving from x1∈∂−� to the
cluster until it reaches the position xji

.
Otherwise for any pair of configurations (ω̃s,i , ω̃s,i+1) such that

|ω̃s,i |= |ω̃s,i+1|, we define ω∗
s,i,0= ω̃s,i ; ω∗

s,i+1,0= ω̃s,i+1. This conclude the
definition of the reference path.

We want now to describe in more details the reference path ω∗s,i,j near
the critical value s∗ = l∗1 + l∗2 −1.

Proposition 9. If the hypothesis (1.49) holds, we have:

(i) In the reference path ω∗ the standard regime starts before s∗:

s∗>3l̄. (3.30)

(ii) The standard rectangle with semi-perimeter s∗ has sides:

�1(s
∗)= l∗1 , �2(s

∗)= l∗2 −1 if [s∗ − l̄]2= [0]2, (3.31)

�1(s
∗)= l∗1 −1, �2(s

∗)= l∗2 if[s∗ − l̄]2= [1]2. (3.32)
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(iii) The standard rectangle with semi-perimeter s∗ + 1 has sides
�1(s

∗ +1)= l∗1 and �2(s
∗ +1)= l∗2 .

(iv) The standard rectangle with semi-perimeter s∗ − 1 has sides
�1(s

∗ −1)= l∗1 −1 and �2(s
∗ −1)= l∗2 −1.

(v) The standard rectangle of maximal energy is in Rst(s∗):

arg max
∪s>l̄+2Rst(s)

H =Rst(s∗). (3.33)

Proof. Let (U1/ε)=:
[
(U1/ε)

]
+ δ1 and (U2/ε)=:

[
(U2/ε)

]
+ δ2. From

Eq. (1.43), we can write

l∗1 =
U1

ε
+1− δ1 and l∗2 =

U2

ε
+1− δ2. (3.34)

Even case. If 0<δ2 � δ1 <1:

l̄ =
[U1

ε
− U2

ε

]
+1=

[U1

ε

]
−

[U2

ε

]
+ [δ1− δ2]+1

= l∗1 − l∗2 +1�⇒ [s∗ − l̄]2= [0]2. (3.35)

Odd case. If 0<δ1 <δ2 <1:

l̄ =
[U1

ε
− U2

ε
+1

]

=
[U1

ε

]
−

[U2

ε

]
+ [δ1− δ2+1]= l∗1 − l∗2 �⇒ [s∗ − l̄]2= [1]2. (3.36)

Let us prove (i); by (1.49) we have:

2l∗2 − l∗1 =2
U2

ε
+2−2δ2− U1

ε
−1+ δ1 � 3−2δ2+ δ1. (3.37)

In the even case [s∗ − l̄]2= [0]2 we have:

s∗ −3l̄ = l∗1 + l∗2 −1−3l∗1 +3l∗2 −3=2(2l∗2 − l∗1 )−4

� 2(3−2δ2+ δ1)−4 � 2(3− δ2)−4>0. (3.38)
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In the odd case [s∗ − l̄]2= [1]2 we have:

s∗ −3l̄= l∗1 + l∗2 −1−3l∗1 +3l∗2 =2(2l∗2 − l∗1 )−1 � 2(3−2δ2+ δ1)−1>0.

(3.39)

The proof of (ii), (iii), and (iv) is an immediate consequence of the defini-
tions (1.38) and (1.39).

Indeed in the even case we have:

�1(s
∗)= s∗ + l̄

2
= l∗1 , �2(s

∗)= s∗ − l̄

2
= l∗2 −1, (3.40)

�1(s
∗ +1)= s∗ +1+ l̄−1

2
= l∗1 , �2(s

∗ +1)= s∗ +1− l̄+1
2

= l∗2 ,(3.41)

�1(s
∗ −1)= s∗ −1+ l̄−1

2
= l∗1 −1, �2(s

∗ −1)=s∗ −1− l̄+1
2

=l∗2−1.

(3.42)

In the odd case we have:

�1(s
∗)= s∗ + l̄−1

2
= l∗1 −1, �2(s

∗)= s∗ − l̄+1
2

= l∗2 , (3.43)

�1(s
∗ +1)= s∗ +1+ l̄

2
= l∗1 , �2(s

∗ +1)= s∗ +1− l̄

2
= l∗2 , (3.44)

�1(s
∗ −1)= s∗ −1+ l̄

2
= l∗1 −1, �2(s

∗ −1)= s∗ −1− l̄

2
= l∗2 −1.

(3.45)

To prove (v), by recalling (3.15), since �1(s)− �2(s)= l̄ in case [s∗ − l̄]2 =
[0]2 and �1(s)−�2(s)= l̄−1 in case [s∗ − l̄]2= [1]2, we have:

H(R0-st(s)) = H
(
R

( s+ l̄

2
,
s− l̄

2

))
=H1(s)+H2(l̄)

= U1+U2

2
s− ε

4
s2+ U2−U1

2
l̄+ ε

4
l̄2 for [s− l̄]2= [0]2,

(3.46)
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H(R1-st(s)) = H
(
R

( s+ l̄−1
2

,
s− l̄+1

2

))
=H1(s)+H2(l̄−1)

= U1+U2

2
s− ε

4
s2+ U2−U1

2
(l̄−1)

+ ε

4
(l̄−1)2 for [s− l̄]2= [1]2. (3.47)

By maximizing the function H1(s) = ((U1+U2)/2)s − (ε/4)s2 in R we
obtain the maximum in s0= ((U1+U2)/ε)= l∗1 + l∗2 −2+ δ1+ δ2; moreover,
H1(s) is a parabola symmetric w.r.t. the axis x= s0. We can conclude that
the maximal energy of standard rectangles, 0 or 1-standard, for s inte-
ger, is obtained for s ∈ {s∗ − 1, s∗, s∗ + 1}. By a direct comparison we can
conclude that this maximal energy is obtained for s = s∗. Indeed in case
[s∗ − l̄]2 = [0]2 by proposition points (ii), (iii), and (iv) we have Rst(s∗)=
R(l∗1 , l∗2 − 1), Rst(s∗ − 1)=R(l∗1 − 1, l∗2 − 1) and Rst(s∗ + 1)=R(l∗1 , l∗2 ) so
that:

H(Rst(s∗))−H(Rst(s∗ −1))=U2− ε(l∗2 −1)= εδ2 >0, (3.48)

H(Rst(s∗))−H(Rst(s∗ +1))=−U1+ εl∗1 = ε(1− δ1)>0. (3.49)

In case [s∗ − l̄]2= [1]2 we have Rst(s∗)=R(l∗1 −1, l∗2 ), Rst(s∗ −1)=R(l∗1 −
1, l∗2 −1) and Rst(s∗ +1)=R(l∗1 , l∗2 ) so that:

H(Rst(s∗))−H(Rst(s∗ −1))=U1− ε(l∗1 −1)εδ1 >0, (3.50)

H(Rst(s∗))−H(Rst(s∗ +1))=−U2+ εl∗2 = ε(1− δ2)>0. (3.51)

We note that, by using point (ii) of the previous Proposition 9, the
circumscribed rectangle to the configurations in P , i.e., the rectangle with
sides �1(s

∗)+ 1, �2(s
∗), is standard only in the case [s∗ − l̄]2= [1]2. In the

other case, [s∗ − l̄]2= [0]2, the circumscribed rectangle is quasi-standard.
The main property of the path ω∗ is the following proposition.

Proposition 10. If U2 <U1 <2U2−2ε, ε=U1+U2−� is sufficiently
small and L large enough, we have that

{arg maxω∗ H }=ω∗ ∩P. (3.52)
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Proof. Let us consider the skeleton path {ω̄s}s=0,... ,2(L+2), and let
ω∗(ω̄s, ω̄s+1) be the part of ω∗ between ω̄s and ω̄s+1, i.e., the interpola-
tion of one step of the skeleton path.

Defining

g(s) := max
η∈ω∗(ω̄s ,ω̄s+1)

H(η) (3.53)

we have:

max
η∈ω∗

H(η)= max
s=0,... ,2(L+2)

g(s). (3.54)

By the definition of ω∗ we have that the function g(s) takes the following
values:

g(s)=
{

H(ω̄s)+2�−U1 if s � 3l̄ and [s]3 �= [0]3, or s >3l̄,

H(ω̄s)− ε s
3 +�+U1 if s � 3l̄ and [s]3= [0]3.

(3.55)

Indeed for the values of s corresponding to steps a.1, a.2, and b.1 of the
definition of the reference path, we can immediately verify that g(s) =
H(ω̄s)+2�−U1. Steps a.3 and b.2 are more complicated since the refer-
ence path visits the quasi-domino and the quasi-standard configurations,
respectively. In these cases we can easily verify the following:
if s � 3l̄ and [s]3= [0]3 then the path described in a.3 has a first part going
from ω̄s to Rq-dom(s+1) reaching its maximal energy at H(ω̄s)+2�−U1.
The second part of the path in a.3 goes from Rq-dom(s + 1) to ω̄s+1 ∈
Rdom(s+ 1) with a maximal energy at H(Rq-dom(s+ 1))+�+U1−U2=
H(ω̄s)+U2− ε(s/3)+�+U1−U2. We have:

max
{
H(ω̄s)+2�−U1, H(ω̄s)− ε

s

3
+�+U1

}
=H(ω̄s)− ε

s

3
+�+U1.

(3.56)

In a similar way, for the standard regime, s > 3l̄, if [s− l̄]2= [0]2 step b.2
gives:

max
{
H(ω̄s)+2�−U1, H(ω̄s)+U2− ε

s− l̄

2
+�+U1−U2

}

=H(ω̄s)+2�−U1, (3.57)

which completes the proof of (3.55).
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We want now to evaluate the maximal value of g(s) in the domino
regime, i.e., for s � 3l̄. The energy of domino configurations is an increas-
ing function of s, for s � 3l̄. More precisely the three functions:

h(0-dom)(n) := H(R0-dom(3n))= (U1+2U2)n−2εn2, n=0, . . . , l̄,

h(1-dom)(n) := H(R1-dom(3n+1))=U1(n+1)+2U2n

−2εn(n+1), n=0, . . . , l̄−1, (3.58)

h(2-dom)(n) := H(R2-dom(3n+2))=U1(n+1)

+U2(2n+1− ε(n+1)(2n+1), n=0, . . . , l̄−1

are increasing functions of n. This implies that:

max
s �3l̄

g(s) = max{H(ω̄3l̄−2)+2�−U1, H(ω̄3l̄−1)+2�−U1,

H(ω̄3l̄ )+U2− εl̄+�+U1−U2}

and by a direct comparison we obtain immediately

max
s �3l̄

g(s)=H(ω̄3l̄ )− εl̄+�+U1. (3.59)

By Proposition 9 point (v), we have that in the standard regime, s > 3l̄

the maximum value of g(s) is obtained in s∗. To conclude the proof of
the proposition we have to compare the maximal values of g(s) in dom-
ino and standard regimes, since the energy of the configurations in T3 can
be made arbitrary small by choosing L large enough.

max
s=0,... ,2(L+2)

g(s) = max{max
s �3l̄

g(s), max
s=3l̄+1,... ,2(L+2)

g(s)}

= max{H(ω̄3l̄ )− εl̄+�+U1, H(ω̄s∗)+2�−U1}
= H(ω̄s∗)+2�−U1. (3.60)

Indeed, if we define δ̄∈ (0,1) by means of the equality l̄= ((U1−U2)/ε)+
1− δ̄ we have immediately:

H(ω3l̄ )− εl̄+�+U1=H(ω3l̄ )+2�−U1+ εδ̄. (3.61)
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On the other hand, by Proposition 9 (i) we have s∗>3l̄ so that H(ωs∗) �
H(Rst(3l̄+1)). By noting that ω3l̄ ∈Rst(3l̄) we have immediately that U1 <

2U2−2ε implies:

H(Rst(3l̄+1))−H(Rst(3l̄))=2U2−U1−2ε+2εδ̄ >εδ̄ (3.62)

so that

H(ωs∗) � H(Rst(3l̄+1))>H(Rst(3l̄))+ εδ̄ (3.63)

and the proof of (3.60) is completed.
By the definition of ω∗ it is immediate to show that the configurations

where this maximum value of energy is obtained, are the configurations in
ω∗ ∩P .

3.3. The Exit from the Set B

We define:

B :=



η :
s(η) � s∗, or
s(η) = s∗ +1 and v(η) � pmin(η)−1, or
s(η) = s∗ +2 and v(η) � s∗ +pmin(η)−2




 , (3.64)

where s∗ is defined in (1.44) and pmin(η)=p1(η)∧p2(η).
The main result of this section is given by the following proposition.

Proposition 11. For Hmin(∂B) as in (1.20), (∂B)min as in (1.21), �

as in (1.46) and P as in (1.45), we have:

Hmin(∂B)=� (3.65)

moreover

if (η̄, η)∈ (∂B)min then H(η̄) � H(η) and η̄∈P. (3.66)

In order to prove this proposition and in particular, in order to analyze
the exiting move from B, we prove a preliminary result on single moves.

Let (η̄, η) be a move, i.e., P(η̄, η)>0, we define

�s := s(η)− s(η̄). (3.67)

We have the following lemma.
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Lemma 12. Let pmin(η) � 4, we have

(i) |�s| � 5,

(ii) if �s=1 then v(η) � pmin(η)−3,

if �s=2 then n(η̄) � 1 and v(η) � 2pmin(η)−5,

if �s=3 then n(η̄) � 2 and v(η) � 3pmin(η)−6,

if �s=4 then n(η̄) � 3 and v(η) � 4pmin(η)−7,

if �s=5 then n(η̄) � 4 and v(η) � 5pmin(η)−8,

(iii) if �s=1 and v(η)<pmin(η)−1 then n(η̄) � 2.

Proof of Lemma (12). We say that a line r (column or row in Z
2)

becomes active in the move from η̄ to η if it was not active in η̄ (i.e., r ∩
η̄cl=∅ see (1.10)) and it is active in η, ηcl∩ r �=∅. In a single move at most
five lines can become active: these are the row and the column containing
the new position of the moved particle, (we will call these lines r1 and r2,
where r1 is the line of the move, and r2 is the line orthogonal to it), and
the three lines through the three nearest–neighbor sites x3, x4, and x5 of
the particle after the move, excluding the site that it occupied in η̄ (lines
r3, r4, and r5) (see Fig. 8).

Lines r3, r4, and r5 become active only if in the corresponding sites
x3, x4, and x5, there was a free particle in η̄, and the line r1, correspond-
ing to the move, becomes active only if the moving particle was free before
the move, otherwise it was already present in η̄. Each line of types 3, 4,
and 5 becoming active, brings in the new configuration at least pmin(η)−1
vacancies; indeed |ri ∩ ηcl| = 1 for i = 3,4,5 since ri ∩ η̄cl = ∅; the line
r1 brings at least pmin(η) − 2 vacancies, and the line r2 brings at least
pmin(η)−3 vacancies. Points (i) and (ii) immediately follow from this.

Figs. 8–10.
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To prove (iii) suppose first that �s=1 with k � 2 activated lines and
k− 1 deactivated lines (i.e., lines which were active in η̄ and that are not
active in η). Since k � 2 activated lines bring at least 2pmin(η)−5 vacan-
cies, and pmin(η) � 4 in this case v(η) � 2pmin(η)−5 � pmin(η)−1. So the
only possibility to have �s=1 and v(η)<pmin(η)−1 is when there is only
one line activated by the move and no deactivated lines, and this activated
line is r1 or r2. If the activated line is r1 and if it brings only pmin(η)−
2 vacancies this means that in this line, in η̄ there are two free particles,
one of which is the moving particle. If the activated line is r2, it brings
pmin(η)−3 vacancies only if it contains 2 free particle before the move in
the sites x3 and x4 (see Fig. 8); it bring pmin(η)−2 vacancies if it contain a
free particle in sites x3 or x4 before the move. If the moving particle is free
in η̄, we have n(η̄) � 2, if the moving particle is not free in η̄, then line r6
(see Fig. 8) was active in η̄ and it is continue to be active in η. Due to the
fact that r2 is the unique line that become active, the line orthogonal to r2
through this free particle (i.e., lines 3 or 4, say r3 for concreteness) must
be active in η̄ and remains active in η. So we can conclude that there is
an additional vacancy in η in the site r6∩ r3, this implies that in this case
v(η) � pmin−2+1.

Point (iii) is thus proved.

Remark 13. We note that if n(η̄) = 0 the unique line that can
become active is r2 and in this case in η̄ sites x3 and x4 are empty and
x5 ∈ η̄cl, where x5 ∈ r1 (see Figs. 8 and 9), so that η̄ is not monotonic
(g′1(η̄)+g′2(η̄) � 1) in this case.

Proof of the main proposition 11. Let (η̄, η) ∈ ∂B be the exiting
move from B and �s be its corresponding variation of s. If pmin(η) � 3,
for ε�U2, from explicit computations it follows:

H(η)>�. (3.68)
Suppose from now on pmin(η) � 4.

By using Lemma 12, we can distinguish seven different cases corre-
sponding to �s=−1,0,1,2,3, 4, 5, since, by definition, the only possibil-
ity to leave B with �s <0 is with s(η̄)= s∗ +2 and �s=−1.

Case −1. We will prove that if �s = −1 and (η̄, η) ∈ ∂B then H(η̄) ∨
H(η) > �. Since s(η̄)= s∗ + 2 we have that H(η̄) � � only if n(η̄)= 0,
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g′1(η̄)+g′2(η̄)=0 and pmin(η̄)>3. Indeed, for pmin(η̄) � 4 we have:

H(η̄) � H(Rst(s∗ +2))+ ε(s∗ +pmin(η̄)−2)

= H(Rst(s∗))+ [H(Rst(s∗ +2)−H(Rst(s∗)]+ ε(s∗ +pmin(η̄)−2)

= H(Rst(s∗))+U1+U2+ ε(pmin(η̄)−3)

� H(Rst(s∗))+U1+U2. (3.69)

So if we add at least U2 coming from g′1(η̄)+ g′2(η̄) � 1 or n(η̄) � 1 we
have H(η̄) � H(Rst(s∗))+U1+2U2 >�.

In the case s(η̄)= s∗+2 with n(η̄)=0 and g′1(η̄)+g′2(η̄)=0, it is impos-
sible to leave B. Indeed, by Remark 13 it is impossible to activate lines
and so �s=−1 is obtained by a unique line becoming inactive. So we have
�v :=v(η)−v(η̄) � −pmax(η̄). By using the obvious relation: pmax(η̄)= s∗+
2−pmin(η̄) we obtain

v(η)� s∗ +pmin(η̄)−2−pmax(η̄)=2pmin(η̄)−4 � pmin(η̄)−1�pmin(η)−1

(3.70)

and so η∈B against (η̄, η)∈ ∂B.

Case 0. This is the case of the minimal exit from B. We have to distin-
guish two cases, indeed if �s=0, then (η̄, η)∈ ∂B only if

(a) s(η̄)= s∗ +1 and �v � −1,

(b) s(η̄)= s∗ +2 and �v � −1.

Since the number of vacancies can decrease only if either p1(η)−p1(η̄)=
p2(η̄)− p2(η) �= 0 or p1(η)− p1(η̄)= p2(η̄)− p2(η)= 0 but |ηcl| − |η̄cl|> 0
that implies that in both case (a) and (b) we have:

(i) either n(η̄) � 1 or

(ii) n(η̄)= 0 and, by Remark 13, g′1(η̄)+ g′2(η̄) � 1 and r2 become
active bringing at least pmin(η)−1 vacancies in η.

Case (a-i) contains the minimal exit from B. Indeed by Proposition 8 we
have H(η̄) � �. Moreover if η̄ �∈P with s(η̄)= s∗ +1, n(η̄) � 1 and v(η) �
pmin−1 we have that H(η̄)>� (see Proposition 8).
Case (a) is compatible only with case (i) because in case (a-ii) v(η) �
pmin(η)−1 and s(η)= s(η̄)= s∗ +1 implies η∈B against (η̄, η)∈∂B. Cases
(b-i) and (b-ii) can be treated as in point −1.
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Case 1. Let �s=1, first suppose s(η̄)= s∗; if η �∈B then v(η)<pmin(η)−1,
indeed by Lemma 12, (iii) we have n(η̄) � 2 and by Proposition 8 we can
conclude

H(η̄) � 2�+H(Rst(s∗))>�. (3.71)

So we have only to consider the cases:

(a) s(η̄)= s∗ +1,

(b) s(η̄)= s∗ +2.

Again we consider two possibilities

(i) either n(η̄) � 1 or

(ii) n(η̄)= 0 and, by Remark 13, g′1(η̄)+ g′2(η̄) � 1 and r2 become
active bringing at least pmin(η)−1 vacancies in η.

In case (a-i), by Proposition 8 we can conclude as in case (0.a-i)
In case (b-i) and (b-ii) we have immediately H(η̄)>� as obtained in

point -1 (see (3.69))
We have only to discuss the case (a-ii). In this case the only line that

can become active is r2 and the configuration η̄cl is not connected. This
also implies that there are no deactivating lines during the move. In this
case we have to consider separately the case in which the move is hori-
zontal or vertical.

(h) Suppose first that the move is horizontal, i.e., r1 is an horizontal
line (see Fig. 9). In this case we have g′2(η̄) � 1 and so by proposition 8,
case b):

H(η̄) � H(Rst(s∗))+�−U1+U1. (3.72)

Moreover if g′2(η̄) � 2 and/or g′1(η̄) � 1 we have immediately H(η̄)>�.
If g′2=1 and g′1=0, we have to consider the following cases:

– If the moving particle has in η̄ at least one vertical and one hori-
zontal bond connecting it to other particles, then �H � U2 and so H(η)>

�.
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Figs. 11–13.

– If the moving particle has in η̄ two vertical bonds connecting it
to other particles (see Fig. 10), then v(η̄) � p1(η̄)+p2(η̄)−2 since, by the
hypothesis g′2(η̄)= 1 g′1(η̄)= 0, in the lines r1, r3 we have over all at least
p1(η̄)−1 vacancies. As shown in (3.73) this implies H(η̄)>�.

– If the moving particle has in η̄ only one horizontal bond connect-
ing it to other particles, then we can conclude that the line r6 becomes
inactive in the move, against �s=1.

– If the moving particle has in η̄ only a vertical bond connecting
it to other particles (see Fig. 11) as before, then we have v(η̄) � p1(η̄)+
p2(η̄)−2. As shown in (3.73) this implies H(η̄)>�.

The proof is completed in this horizontal case once we show
that a configuration η̄ with: s(η̄) = s∗ + 1, n(η̄) = 0, g′2(η̄) = 1 and
v(η̄) � p1(η̄)+p2(η̄)−2 has H(η̄)>�. Indeed we have:

H(η̄) � H(Rst(s∗ +1))+ ε(s∗ −1)+U1
> H(Rst(s∗ +1))+ ε(l∗2 −1)+� � �.

(3.73)

(v) Suppose now that the move is vertical (see Fig. 12). In this case
we have g′1(η̄) � 1 and so by Proposition 8

H(η̄) � H(Rst(s∗))+�−U1+U2. (3.74)

We have to consider the following cases:

– If the moving particle has in η̄ at least one vertical and one hori-
zontal bond connecting it to other particles, then �H � U1 so that H(η)>

�.
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Fig. 14. (U1+U2)-reduction of a rectangle with a hole.

– If the moving particle has in η̄ at least two horizontal bonds con-
necting it to other particles, then �H =−U2+2U1 so that H(η)>�.

– If the moving particle has in η̄ only one vertical bond connecting
it to other particles, then we can conclude that the line r6 becomes inac-
tive in the move, against �s=1.

– If the moving particle has in η̄ only one horizontal bond connect-
ing it to other particles, then �H =U1 −U2. If g′1(η̄)= 1 then H(η) > �

since v(η̄) � p1(η̄)+p2(η̄)−2 (see Fig. 13).

If g′1(η̄)>1 then again we have H(η)>�.

The proof is completed in this vertical case if we prove that a configura-
tion η̄ with: s(η̄)= s∗ +1, n(η̄)=0, g′1(η̄)=1 and v(η̄) � p1(η̄)+p2(η̄)−2
has H(η̄)>�−U1+U2, that is H(η)>�. This computation is exactly the
same as in the horizontal case (see Eq. (3.73))

Case 2. If �s = 2, (η̄, η) ∈ ∂B only if s(η̄) � s∗, and by Lemma 12 we
know that n(η̄) � 1. If s(η̄)= s∗ + 1 and n(η̄)= 1 we can conclude as in
case (0.a-i). If s(η̄)= s∗ + 2 since n(η̄) � 1 we have immediately H(η̄)>�

(see Eq. (3.69)).
If s(η̄)= s∗ and n(η̄) � 2 then we have H(η̄) � 2�+H(Rst(s∗))>�.
So we are left with the case: s(η̄)= s∗ and n(η̄)=1.
If the unique free particle is the moving particle we can not have �s=

2. Indeed r3, r4, and r5 can not be activated and, in order to have �s=2,
r1 and r2 have to become active. This implies that the sites x3, x4, and x5
must be empty, but then �s=0.

If g′1(η̄)+g′2(η̄) � 1 we have

H(η̄) � �+H(Rst(s∗))+U2 >� (3.75)

since � + U2 > 2� − U1. So we have to consider only the case s(η̄) =
s∗, n(η̄)=1, g′1(η̄)=g′2(η̄)=0.
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We distinguish two cases:

(a) the free particle is in site xi , with i equal 3 or 4 the lines that
become active are r2 and ri . Due to g′1(η̄)=g′2(η̄)=0 the site x5 is empty,
and the site {x3, x4}\{xi} is empty.

(b) the free particle is in site x5 the lines that become active are r2
and r5 and the sites x3 and x4 are empty.

In both cases if the moving particle has in η̄ at least one vertical and
one horizontal bond connecting it to other particles, then �H � U2 and
so H(η) � H(η̄)+U2 � H(Rst(s∗))+�+U2 >�.

If the moving particle has in η̄ either two bonds orthogonal to the
move, or only one vertical or only one horizontal bond connecting it to
other particles, then it is impossible to leave B. Indeed in this case there
exists a line r (r = r1 or r = r6) such that its intersection with η̄ is only
the moving particle. If r= r6 then this line become inactive after the move
against �s=2. If r= r1 then the number of vacancies in η are at least the
vacancies induced by the two activating lines and r1. This means that in
case (a) ri and r2 becomes active

|r1∩ηcl|=1, |r2∩ηcl|=2, |ri ∩ηcl|=1 (3.76)

so that

v(η) � p1−1+p2−2+pmin(η)−1= s(η)+pmin(η)−4= s∗ +pmin(η)−2.

(3.77)

In case (b) lines r5 and r2 become active and

|r1∩ηcl|=2, |r2∩ηcl|=1, |r5∩ηcl|=1 (3.78)

so that

v(η) � p1−2+p2−1+pmin(η)−1= s∗ +pmin(η)−2 (3.79)

and so η∈B against (η̄, η)∈ ∂B.

Case 3. If �s=3, (η̄, η)∈ ∂B only if s(η̄) � s∗ −1, and by Lemma 12 we
know that n(η̄) � 2. Therefore, we have

H(η̄) � 2�+H(Rst(s∗ −1))>� (3.80)
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since H(Rst(s∗ + 1))−H(Rst(s∗ − 1))=U1 +U2 − ε(s∗ + 1) and so 2�+
H(Rst(s∗ − 1))= 2�+H(Rst(s∗ + 1))−U1 −U2 + ε(s∗ + 1) > H(Rst(s∗ +
1))+ ε(l∗2 −1)+�=�.

Case 4. If �s=4, (η̄, η)∈∂B only if s(η̄) � s∗ −2, and by Lemma 12 we
know that n(η̄) � 3. Therefore, we have H(η̄) � 3�+H(Rst(s∗ − 2)) > �

as before.

Case 5. If �s=5, (η̄, η)∈∂B only if s(η̄) � s∗ −3, and by Lemma 12 we
know that n(η̄) � 4. Therefore, we have H(η̄) � 4�+H(Rst(s∗ − 3)) > �

as before.

3.4. Communication Height and Gate

By definition of communication height 
(0,1), by Proposition 10 we
have immediately:


(0,1) � max
i

H(ω∗i )=H(P)=�, (3.81)

where P and � are defined in (1.45) and (1.46), respectively. On the
other side, since every path going from 0 to 1 has to leave B, we have by
Proposition 11 that


(0,1) := min
ω:0→1

max
ζ∈ω

H(ζ ) � Hmin(∂B)=�. (3.82)

By combining (3.81) and (3.82) we immediately obtain


(0,1)=�. (3.83)

Note that to prove (3.83) we have applied the argument developed in
ref. 11 with some small variations. In ref. 11, the set ∂+B (external
boundary of B, see (1.17)) was considered, while here we use the set ∂B
of exiting moves from B (see (1.19), so that in the present case Hmin(∂B)

substitutes H(F(∂+B)).
The argument used to prove (3.83) also implies that P is a gate.

Indeed given any optimal path ω, it has to leave B with a move in (∂B)min
otherwise, by Proposition 11 we would have maxi H(ωi)>�. To conclude
we use (3.66).
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3.5. Reduction

In this section we first prove the following proposition.

Proposition 14. There exists �0 <� such that X�0 ⊆{0,1}, i.e.:

∀η �=0,1 ∃η′ ∈X and a path ω :η→η′ s.t.

H(η′)<H(η), max
ζ∈ω

H(ζ ) � H(η)+�0. (3.84)

In the second part of this section, as a corollary of this proposition,
we will identify the stable and metastable states.

Proposition 15. If the side L of the box � is large enough (L>2l∗1
is a possible choice), then V0=
(0,1) and 1=X s, 0=X m.

3.5.1. Reduction Outside {0,1}
To prove Proposition 14 we first characterize the set XU1+U2 of con-

figurations which are not (U1+U2)-reducible, as follows.

Proposition 16. Any configuration η∈XU1+U2 has no free particles
and it has only rectangular clusters with minimal side larger than 1.

We introduce some geometrical definitions. Let η∈X be given.

(i) A site x∈� is connected trough empty (full) sites to ∂−� if there
exists x1, . . . , xn a connected chain of nearest–neighbor empty (full) sites
namely, x1 ∈ nn(x), x2 ∈ nn(x1), . . . , xn ∈ nn(xn−1), xn ∈ ∂−� and η(x1)=
η(x2)=· · ·=η(xn)=0 (η(x1)=η(x2)=· · ·=η(xn)=1).

(ii) An external corner of a set A ⊂ � is a site x �∈ A such that∑
y∈nn(x):(x,y)∈�∗

0,h
χA(y)= 1 and

∑
y∈nn(x):(x,y)∈�∗

0,v
χA(y)= 1, where χA is

the characteristic function of the set A.

(iii) An internal corner of a set A ⊂ � is a site x ∈ A such that∑
y∈nn(x):(x,y)∈�∗

0,h
χA(y)=1 and

∑
y∈nn(x):(x,y)∈�∗

0,v
χA(y)=1.

(iv) Let ηext be the set of sites x∈�0 such that η(x)=1 and x is con-
nected trough empty sites with ∂−�.

Proof of Proposition 16. If η has a free particle then η is obvi-
ously 0-reducible, i.e., η �∈XU1+U2 . The reducing path ω satisfying (3.84) is
immediately obtained by bringing the free particle outside � or attaching
it to a cluster.
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Thus for each η∈XU1+U2 we have η=ηcl. Let C1(η), . . . ,Cn(η) be the
clusters of η and let C̄1(η), . . . , C̄m(η) be the minimal simply connected
sets of R

2 containing C1(η), . . . ,Cn(η), i.e., the clusters whose holes have
been filled up. We next show the following:

a. the sets C̄i are rectangles with minimal side larger than one,

b. there are no holes inside the clusters: Ci(η)= C̄i(η) for any i.

a. By definition the Euclidean distance between two different clus-
ters in R

2 is at least one. This implies that if there is a set C̄i(η), which is
not a rectangle, then there is an external corner x of η connected trough
empty sites x1, . . . , xn to ∂−�. This implies that η can be �-reduced.
Indeed the reducing path, i.e., the path ω :η→ η′ with H(η′) < H(η) and
such that maxζ∈ω H(ζ ) � H(η)+�, is given by the sequence of configura-
tions ωi with the same clusters as η plus a free particle that moves along
the sequence xn, . . . , x1, (xn ∈ ∂−�, x1, a nearest–neighbor of the external
corner x). In the final configuration ωn+1 the free particle is attached to
the cluster in the site x. We have H(ωi) � H(η)+� for i= 1, . . . , n and
H(ωn+1) � H(η)+�− (U1+U2)<H(η).

If a set C̄i(η) is made by a unique row (or a unique column) then
the configuration η is obviously U1-reducible (U2-reducible) by removing
a particle of the row (column) and bringing it out of �.

b. If one of the clusters of η has a hole, i.e., if there exists Ci(η), which
is not simply connected, then η can be (U1+U2)-reduced (see Fig. 14).

Indeed, if such a cluster Ci(η) exists, there exists also a cluster Ci0(η),
possibly equal to Ci(η), with holes and with Ci0(η)∩ηext �=∅.

Let y be an internal corner of a hole of Ci0(η), connected to an inter-
nal corner yn of Ci0(η) through full sites y1, y2, . . . , yn and such that yn∈
ηext . Such corners y and yn exist since every set has at least four internal
corners and since Ci0(η)∩ηext �=∅.

Let η1, η2, . . . , ηn be the configurations obtained by moving the
empty site from y to yn through y1, . . . , yn−1.

For any i=1, . . . , n−1, by using that y has at least 2 n.n. non-opposite
occupied sites and that yn has 2 n.n. non-opposite empty sites we have:

H(ηi)−H(η) � U1+U2 and H(ηn) � H(η). (3.85)

Moreover, by definition, yn is an external corner of ηn, connected
through empty sites to ∂−�, so that ηn can be �-reduced as in point a.
By joining the path η1, η2, . . . , ηn with the path realizing the �-reduction
of ηn we obtain the U1+U2-reduction of η.
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Proof of Proposition 14. Suppose that η ∈ XU1+U2 and η �= 0,1,
from Proposition 16 η has only rectangular clusters which are connected
through empty sites to ∂−�, i.e., ηext= ∂−η.

Suppose now that a rectangular cluster of η has a vertical sub-
critical side, i.e., l2 < l∗2 , then it is possible to reduce η with the path
described in Fig. 2 that removes a column of length l2 with energy bar-
rier �H (remove column) =U1+U2+ ε(l2−2)<2�−U1.

Otherwise if any rectangle in η has vertical supercritical sides, l2 � l∗2 ,
it is possible to reduce η with the path described in Fig. 2 that adds a col-
umn with energy barrier �H (add column) =2�−U1.

The proof is complete by defining �0 :=2�−U1 <�.

3.5.2. Stable and Metastable States

Proof of Proposition 15. Since X s⊆XV for any V � 0 and since,
if the side L of the volume � is large enough, we have H(0)>H(1), using
also that by Proposition 14 we have X�0 ⊆{0,1}, we can immediately con-
clude that X s=1. If we are able to prove that

V0=
(0,1)=� >�0 (3.86)

we can immediately conclude that 0∈X m.
Let us now prove (3.86). By definition we have that V0 � 
(0,1).

We argue by contradiction: suppose that V0 < 
(0,1). Then, by defini-
tion, there exists η(1) with H(η(1)) < H(0) and 
(0, η(1))= V0 < 
(0,1).
This implies that η(1) can not be equal to 1, so since by X�0 ⊆{0,1}, we
know that η(1) �∈X�0 we can iterate this argument by obtaining a sequence
H(0) > H(η(1)) > H(η(2)) > · · · > H(η(n)) with 
(η(i), η(i+1)) � H(η(i)) +
�0 <
(0,1) if η(i) �=1. The number of these iterations must be finite since
the sequence η(i) has a strictly decreasing energy and the state space is
finite. Moreover, the sequence stops at η(n)∈X�0 and we have η(n)=1 since
X�0 ⊆{0,1} and H(η(0))>H(η(n)). We obtain


(0,1) = 
(0, η(n)) � max{
(0, η(1)),
(η(1), η(2)), . . . ,
(η(n−1), η(n))}
< 
(0,1), (3.87)

which is absurde.
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3.6. Proof of Theorem 3

To prove Theorem 3 we need the notion of cycle that is one of the
main tools used in the general theory of Freidlin–Wentzell Markov chains.
We shortly recall the definition in our case.

A non-trivial cycle is a connected set C⊂X such that

max
σ∈C

H(σ)<H(F(∂+C)). (3.88)

Any singleton that is not a non-trivial cycle is called trivial cycle.
The following result represents the main property of cycles (see for

instance refs. 11 and 15 Theorem 2.17): with large probability every state
in a cycle is visited by the process before the exit.

Proposition 17. Let C be a cycle. There exists K > 0 such that for
any η, η′ ∈C and for all sufficiently large β

Pη(τη′ <τ∂+C) � 1− e−Kβ. (3.89)

By using this resut, to prove Theorem 3 it is sufficient to show the
following:

(i) if η is a rectangular configuration contained in R(l∗1 − 1, l∗2 − 1),
then there exists a cycle C0 containing η and 0 and not containing 1;

(ii) if η is a rectangular configuration containing R ∈R(l∗1 , l∗2 ), then
there exists a cycle C1 containing η and 1 and not containing 0.

We start by showing (i). Let C0 be the maximal connected set contain-
ing 0 such that maxη′∈C0 H(η′)<�. By definition C0 is a cycle containing
0. It does not contain 1 since 
(0,1)=�. We have only to prove that C0
contains η. This can be easily obtained by constructing a path ωη,0 going
from η to 0 keeping the energy less than �. ωη,0 is obtained by erasing
site by site, each column of η and by showing that all the configurations
of this path are in C0.

More precisely, let η= {(x, y) ∈Z
2; x ∈ (n, n+ l1], y ∈ (m,m+ l2]} ∈

R(l1, l2) for some n,m∈Z, and let {ω̄η,0
i }i=0,... ,l1 be a path of rectangular

configurations, starting from η and ending in 0, given by

ω̄
η,0
i ={(x, y) : x ∈ (n, n+ l1− i], y ∈ (m,m+ l2]}. (3.90)



594 Nardi et al.

To complete the construction we can use now the same idea applied in the
definition of the reference path ω∗: between every pair ω̄

η,0
i , ω̄

η,0
i+1 we can

insert a sequence ω̃
η,0
i,0 , . . . , ω̃

η,0
i,l2

, where ω̃
η,0
i,0 = ω̄

η,0
i and for j > 0, ω̃

η,0
i,j is

obtained by ω̄
η,0
i by erasing j sites:

ω̃
η,0
i,j = ω̄

η,0
i \{(x, y): x=n+ l1− i, y ∈ [m+ l2− j,m+ l2]}. (3.91)

Again, as in the reference path ω∗, the last interpolation consists in insert-
ing between every pair of consecutive configurations in ω̃η,0 a sequence
of configurations with a free particle in a suitable sequence of sites going
from the site previously occupied by the erased particle to ∂�. Since for
any l1 � l∗1 −1 and l2 � l∗2 −1 we have H(R(l1, l2))<H(R(l∗1 −1, l∗2 )), for
the path ωη,0 obtained in this way we have:

max
i

H(ω
η,0
i )= max

l∈[1,l1−1]
H(R(l, l2))+2�−U1 <�. (3.92)

The proof of (ii) is similar. Let C1 be the maximal connected set con-
taining 1 such that maxη′∈C1 H(η′) < �. Again C1 is by definition a cycle
containing 1 and not containing 0 since 
(0,1)=�. To prove that C1 con-
tains η we define now a path ωη,1 going from η to 1 obtained by reaching
first of all the standard shape and, from there, following the path ω∗. As
before, it is easy to show that all the configurations of this path have an
energy smaller than � so that they are in C0.

Going into the details, let η ∈R(l1, l2); let us suppose that [l1 + l2 −
l̄]2= [0]2, since the other case, [l1+ l2− l̄]2= [1]2, can be treated in a sim-
ilar way. If l1 − l2 = l̄ then η is standard and ωη,1 can be chosen as the
part of the reference path ω∗ going from η to 1. If l1− l2 <l̄ then first add
columns to η, with the mechanism similar to the time reversal of the one
used in the construction of ωη,0, until we reach the standard rectangle in
R(l2+ l̄, l2). The remaining part of the path follows ω∗ from R(l2+ l̄, l2)

to 1. If l1 − l2 > l̄ then first move columns to rows following the mecha-
nism given in steps a.3 and b.2, until we reach a standard rectangle. From
there, follow the reference path ω∗. For the path ωη,1 obtained in this way,
by using that in our parameter regime �+U1 −U2 < 2�−U1, and that
H(R(l′1, l

′
2))<H(R(l∗1 −1, l∗2 )), for any l′1 � l∗1 and l′2 � l∗2 , we obtain:

max
i

H(ω
η,1
i ) � max

l′1 � l∗1 ,l′2 � l∗2
H(R(l′1, l

′
2))+2�−U1 <� (3.93)

so that ω
η,1
i ∈C1 for any i and the proof of theorem 3 is complete.
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